The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recognition applications; the proposed method was evaluated for performance in terms of computational accuracy, convergence analysis, and cost.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreThe aim of this study was to identify the effectiveness of using generative learning model in learning kinetic series on rings and horizontal bar in artistic gymnastics for men ,Also, the two groups were better in learning the two series of movements on the rings and horizontal bar . The experimental method was used to design two parallel groups with pretested and posttest .The sample included third graders at the College of Physical Education and Sports Sciences - University of Baghdad ,The third class (d) was chosen to represent the control group that applied the curriculum in the college, with (12) students per group. After conducting the tribal tests, the main experiment was carried out for (8) weeks at the rate of two units per week di
... Show MoreAbstract The purpose of this study, teach the art of performing Olympic lifts (snatch and, clean and jerk) using the two methods are instructional (self-learning associated with the model) and (reverse style of partial way). Identify the effectiveness of these methods in learning the art of performance and style of the best Olympic lifting in the learning and retention of novice for Olympic lifts. The research sample consisted of 16 lifters were selected purposively representing specialist center for the care of athletic talent to weightlifting for ages 14 years. The sample was divided into two experimental, Each group (8) eight weightlifters. The experimental group used the style of the first self-learning associated with the m
... Show More— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen
... Show MorePermeability estimation is a vital step in reservoir engineering due to its effect on reservoir's characterization, planning for perforations, and economic efficiency of the reservoirs. The core and well-logging data are the main sources of permeability measuring and calculating respectively. There are multiple methods to predict permeability such as classic, empirical, and geostatistical methods. In this research, two statistical approaches have been applied and compared for permeability prediction: Multiple Linear Regression and Random Forest, given the (M) reservoir interval in the (BH) Oil Field in the northern part of Iraq. The dataset was separated into two subsets: Training and Testing in order to cross-validate the accuracy
... Show MoreComputer vision seeks to mimic the human visual system and plays an essential role in artificial intelligence. It is based on different signal reprocessing techniques; therefore, developing efficient techniques becomes essential to achieving fast and reliable processing. Various signal preprocessing operations have been used for computer vision, including smoothing techniques, signal analyzing, resizing, sharpening, and enhancement, to reduce reluctant falsifications, segmentation, and image feature improvement. For example, to reduce the noise in a disturbed signal, smoothing kernels can be effectively used. This is achievedby convolving the distributed signal with smoothing kernels. In addition, orthogonal moments (OMs) are a cruc
... Show MoreWe demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident We demonstrate the results of a mathematical model for investigation the nonlinear Stimulated Brillouin Scattering (SBS), which can be employed to achieve high optical amplifier. The SBS is created by interaction between the incident light and the acoustic vibration fiber. The design criteria and the amplification characteristic of the Brillouin amplifier is demonstrated and discussed for fiber Brillouin amplifier using different pump power with different fiber length. The results show, high Brillouin gain can
... Show MoreAudio-visual detection and recognition system is thought to become the most promising methods for many applications includes surveillance, speech recognition, eavesdropping devices, intelligence operations, etc. In the recent field of human recognition, the majority of the research be- coming performed presently is focused on the reidentification of various body images taken by several cameras or its focuses on recognized audio-only. However, in some cases these traditional methods can- not be useful when used alone such as in indoor surveillance systems, that are installed close to the ceiling and capture images right from above in a downwards direction and in some cases people don't look straight the cameras or it cannot be added in some
... Show MoreIn this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show More