Preferred Language
Articles
/
cBYd3YoBVTCNdQwCTaZj
THE VALUE OF COLLABORATIVE LEARNING IN DEVELOPING STUDENT’S SPEAKING SKILLS
...Show More Authors

The majority of Arab EFL (English as a Foreign Language) learners struggle with speaking English fluency. Iraqi students struggle to speak English confidently due to mispronunciation, grammatical errors, short and long pauses while speaking or feeling confused in normal conversations. Collaborative learning is crucial to enhance student’s speaking skills in the long run. This study aims to state the importance of collaborative learning as a teaching method to EFL learners in the meantime. In this quantitative and qualitative study, specific focus is taken on some of Barros’s views of collaborative learning as a teamwork and some of Pattanpichet’s speaking achievements under four categories: academic benefits, social benefits, generic skills, and negative aspects. 100 undergraduate students, whose level at the first academic year in College of Veterinary Medicine, the University of Baghdad-Iraq, have participated in this experimental study. The results of independent and dependent variables estimated Cronbach’s Alpha high internal consistency. The study data chooses the alternative hypothesis maintaining that the treatment effect was statistically significant. Collaborative learning correlates positively with development of Iraqi EFL learners of speaking skills on academic benefits, social benefits, and generic skills at the level of significance, unlike passive correspondence. It was risen with negative aspects. The main limitations of the current study were that of small sample size of Iraqi EFL learners among medical colleges. The results revealed merely one medical college among other colleges in medicine, science, social and human studies at the University of Baghdad. It has not covered other levels of undergraduate study. The study recommends additional investigations to explore the value of collaborative learning to achieve student’s speaking skills in human and social fields of the Arab and foreign learning communities

Crossref
View Publication
Publication Date
Sun Aug 01 2021
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
BUILDING AND RATIONING SCALE MANAGEMENT CONSTRAINTS OF E-LEARNING FROM THE PERSPECTIVE OF TEACHING THE FACULTY OF PHYSICAL EDUCATION AND SPORTS SCIENCE UNIVERSITY OF BAGHDAD
...Show More Authors

Publication Date
Sat Apr 15 2023
Journal Name
Journal Of Robotics
A New Proposed Hybrid Learning Approach with Features for Extraction of Image Classification
...Show More Authors

Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class

... Show More
View Publication
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Fri Mar 10 2023
Journal Name
Mathematics
Hamilton–Jacobi Inequality Adaptive Robust Learning Tracking Controller of Wearable Robotic Knee System
...Show More Authors

A Wearable Robotic Knee (WRK) is a mobile device designed to assist disabled individuals in moving freely in undefined environments without external support. An advanced controller is required to track the output trajectory of a WRK device in order to resolve uncertainties that are caused by modeling errors and external disturbances. During the performance of a task, disturbances are caused by changes in the external load and dynamic work conditions, such as by holding weights while performing the task. The aim of this study is to address these issues and enhance the performance of the output trajectory tracking goal using an adaptive robust controller based on the Radial Basis Function (RBF) Neural Network (NN) system and Hamilton

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Thu Aug 01 2024
Journal Name
Advances In Science And Technology Research Journal
Power Predicting for Power Take-Off Shaft of a Disc Maize Silage Harvester Using Machine Learning
...Show More Authors

View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Developing Load Balancing for IoT - Cloud Computing Based on Advanced Firefly and Weighted Round Robin Algorithms
...Show More Authors

The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities.   Cloud computing can be used to store big data.  The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
The International Journal Of Nonlinear Analysis And Applications
Developing Bulk Arrival Queuing Models with Constant Batch Policy Under Uncertainty Data Using (0-1) Variables
...Show More Authors

This paper delves into some significant performance measures (PMs) of a bulk arrival queueing system with constant batch size b, according to arrival rates and service rates being fuzzy parameters. The bulk arrival queuing system deals with observation arrival into the queuing system as a constant group size before allowing individual customers entering to the service. This leads to obtaining a new tool with the aid of generating function methods. The corresponding traditional bulk queueing system model is more convenient under an uncertain environment. The α-cut approach is applied with the conventional Zadeh's extension principle (ZEP) to transform the triangular membership functions (Mem. Fs) fuzzy queues into a family of conventional b

... Show More
Publication Date
Wed Aug 30 2023
Journal Name
Baghdad Science Journal
Post COVID-19 Effect on Medical Staff and Doctors' Productivity Analysed by Machine Learning
...Show More Authors

The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. T

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (13)
Scopus Crossref
Publication Date
Sun Dec 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
CALCULATION BIASES FOR COEFFICIENTS AND SCALE PARAMETER FOR LINEAR (TYPE 1) EXTREME VALUE REGRESSION MODEL FOR LARGEST VALUES
...Show More Authors

Abstract

Characterized by the Ordinary Least Squares (OLS) on Maximum Likelihood for the greatest possible way that the exact moments are known , which means that it can be found, while the other method they are unknown, but approximations to their biases correct to 0(n-1) can be obtained by standard methods. In our research expressions for approximations to the biases of the ML estimators (the regression coefficients and scale parameter) for linear (type 1) Extreme Value Regression Model for Largest Values are presented by using the advanced approach depends on finding the first derivative, second and third.

View Publication Preview PDF
Crossref
Publication Date
Sun May 22 2022
Journal Name
International Journal Of Early Childhood Special Education
A training program based on integrating futuristic thinking skills with classroom interaction patterns and its effect on the academic self- efficacy of mathematics teachers
...Show More Authors

The research aims to identify the effect of the training program that is based on integrating futuristic thinking skills with classroom interaction patterns on mathematics teachers in order to provide their students with creative solution skills. The research sample consisted of 31teachers (15 teachers for the experimental group and 16 for the control groups). The researcher developed a measure for the academic self-efficacy consisting of (39) items. Its validity, reliability, coefficient of difficulty and discriminatory power were estimated. To analyze the findings, the researcher adopted the Mann-Whitney (U) test and the effect size, and the findings were as follows: There is a statistically significant difference at the significance leve

... Show More
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More