Burn is one of the most devastating traumas that someone can encounter in their life. Burn wound sepsis is still the leading cause of death in burned patients. Appropriate knowledge of the causative pathogen in burn sepsis is important for successful patient management and for the reduction of the incidence of antibiotic resistance. A retrospective study was conducted between 2010 and 2018 at the Burn Specialty Hospital in Baghdad.Atotal of 320 blood culture samples were obtained from patients with sepsis orsuspected of having sepsis. Patient age ranged between 9 months to 70 years old, with a mean total burn surface area of 45.26%. The most common microorganisms isolated from those patients who had sepsis or suspicion of sepsis were Klebsiella (48 cases) followed by Pseudomonas (36 cases), Staphylococcus species (26 cases), Enterococcus (8 cases), Acinetobacter (11 cases), E-Coli (11 cases), Candida (4 cases), Proteus (2 cases), and Salmonella, Streptococcus pneumonia, Monilia, and Seriata one case for each. The most commonly isolated organism was Klebsiella: it was sensitive to Imipenem followed by Amikacin, Nitrofurantoin, Piperacillin, Ciprofloxacin, Co-trimoxazole, Chloramphenicol, Tetracycline, Azithromycin and Cefotaxime. Microbio- logical surveillance of burn patients with sepsis or suspicion of having sepsis over a period of 9 years in our hospital has shown that the most common microorganism isolated from blood cultures was Klebsiella. Kleb- siella was sensitive to Imipenem mainly according to sensitivity testing using the disk diffusion method.
Graceful labeling of a graph with q edges is assigned the labels for its vertices by some integers from the set such that no two vertices received the same label, where each edge is assigned the absolute value of the difference between the labels of its end vertices and the resulting edge labeling running from 1 to inclusive. An edge labeling of a graph G is called vertex anntimagic, if all vertex weights are pairwise distinct, where the vertex weight of a vertex under an edge labeling is the sum of the label of all edges incident with that vertex. In this paper, we address the problem of finding graceful antimagic labelin for split of the star graph , graph, graph, jellyfish graph , Dragon graph , ki
... Show MoreIn this paper we define and study new concepts of functions on fibrewise topological spaces over B namely, fibrewise weakly (resp., closure, strongly) continuoac; funttions which are analogous of weakly
(resp., closure, strongly) continuous functions and the main result is : Let <p : XY be a fibrewise closure (resp., weakly, closure, strongly, strongly) continuous function, where Y is fibrewise topological space over B and X is a fibrewise set which has the
in
... Show MoreThroughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
Czerwi’nski et al. introduced Lucky labeling in 2009 and Akbari et al and A.Nellai Murugan et al studied it further. Czerwi’nski defined Lucky Number of graph as follows: A labeling of vertices of a graph G is called a Lucky labeling if for every pair of adjacent vertices u and v in G where . A graph G may admit any number of lucky labelings. The least integer k for which a graph G has a lucky labeling from the set 1, 2, k is the lucky number of G denoted by η(G). This paper aims to determine the lucky number of Complete graph Kn, Complete bipartite graph Km,n and Complete tripartite graph Kl,m,n. It has also been studied how the lucky number changes whi
... Show MoreIn this paper we give many connections between essentially quasi-Dedekind (quasi-
Dedekind) modules and other modules such that Baer modules, retractable modules,
essentially retractable modules, compressible modules and essentially compressible
modules where an R-module M is called essentially quasi-Dedekind (resp. quasi-
Dedekind) if, Hom(M N ,M ) 0 for all N ≤e M (resp. N ≤ M). Equivalently, a
module M is essentially quasi-Dedekind (resp. quasi-Dedekind) if, for each
f End (M) R , Kerf ≤ e M implies f = 0 (resp. f 0 implies ker f 0 ).
Throughout this paper R represents commutative ring with identity and M is a unitary left R-module. The purpose of this paper is to investigate some new results (up to our knowledge) on the concept of weak essential submodules which introduced by Muna A. Ahmed, where a submodule N of an R-module M is called weak essential, if N ? P ? (0) for each nonzero semiprime submodule P of M. In this paper we rewrite this definition in another formula. Some new definitions are introduced and various properties of weak essential submodules are considered.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then Ais called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
The definition of semi-preopen sets were first introduced by "Andrijevic" as were is defined by :Let (X , ï´ ) be a topological space, and let A ⊆, then A is called semi-preopen set if ⊆∘ . In this paper, we study the properties of semi-preopen sets but by another definition which is equivalent to the first definition and we also study the relationships among it and (open, α-open, preopen and semi-p-open )sets.
The structure of this paper includes an introduction to the definition of the nano topological space, which was defined by M. L. Thivagar, who defined the lower approximation of G and the upper approximation of G, as well as defined the boundary region of G and some other important definitions that were mentioned in this paper with giving some theories on this subject. Some examples of defining nano perfect mappings are presented along with some basic theories. Also, some basic definitions were presented that form the focus of this paper, including the definition of nano pseudometrizable space, the definition of nano compactly generated space, and the definition of completely nano para-compact. In this paper, we presented images of nan
... Show MoreThe purpose of this paper is to extend some results concerning generalized derivations to generalized semiderivations of 3-prime near rings.