This study was aimed to reduce the amount of the sprayed solution lost during trees spraying. At the same time, the concentration of the sprayed solution on the target (tree or bush) must be ensured and to find the best combination of treatments. Two factors controls the spraying process: (i) spraying speed (1.2 km/h, 2.4 km/h, 3.6 km/h), and (ii) the type of sensor. The test results showed a significant loss reduction percentage. It reached (6.05%, 5.39% and 2.05%) at the speed (1.2 km/h, 2.4 km/h, 3.6 km/h), respectively. It was noticed that when the speed becomes higher the loss becomes less accordingly. The interaction between the 3.6 km/h speed and the type of Ultrasonic sensor led to a decrease in the percentage of the spray losses reached to 1.69. For the coverage percentage, the increase in the spraying speed from 1.2 km/h to 2.4 km/h, and then to 3.6 km/h led to a significant decrease in the percentage of coverage (from 17.73% to 13.14%, and then to 11.12%), respectively. The interaction between the type of sensor and the speed has significantly affected the spray density. The speed was 3.6 km/h, and the type of Ultrasonic sensor was superior in obtaining the highest spray density of 83.2 drops/cm2.
Production and characterization of methionine γ- lyase from Pseudomonas putida and its effect on cancer cell lines
Germination and field emergence are delayed and their duration is prolonged due to the declining soil temperature during the spring season, which is reflected in the subsequent stages of crop growth, therefore, this study aimed to improve germination. Under a wide range of environmental conditions, a laboratory factorial experiment was carried out to study the effect of seed stimulation with potassium nitrate (distilled water only (0), 2, 4, and 6 mg L-1) and with an aqueous extract of licorice roots (distilled water only (0), 3, 6, and 9 g L-1) on the seed viability and vigor. The laboratory experiment was carried out according to the Completely Randomized Design (CRD) with four repetitions. The results showed the superiority of the intera
... Show Moreم.د. فاطمة حميد ،أ.م.د وفاء صباح محمد الخفاجي, International Journal of Psychosocial Rehabilitation,, 2020 - Cited by 1
Routing protocols are responsible for providing reliable communication between the source and destination nodes. The performance of these protocols in the ad hoc network family is influenced by several factors such as mobility model, traffic load, transmission range, and the number of mobile nodes which represents a great issue. Several simulation studies have explored routing protocol with performance parameters, but few relate to various protocols concerning routing and Quality of Service (QoS) metrics. This paper presents a simulation-based comparison of proactive, reactive, and multipath routing protocols in mobile ad hoc networks (MANETs). Specifically, the performance of AODV, DSDV, and AOMDV protocols are evaluated and analyz
... Show MoreBackground: Chronic otitis media (COM) of mucosal or squamous type is a common problem in otolaryngology practice, the active form of COM is characterized by discharge of pus and is treated by antibiotics to start with, the appropriate antibiotic should be prescribed to avoid antibiotic abuse and guarantee good outcome. Objectives:The objective of this study is to identify the causative organisms of active chronic active otitis media both (mucosal, squamous) type and test their sensitivity to various anti- microbial agents &compare with abroad studies.Methods:A prospective study was done on eighty patients, different ages and sexes were taken and carful history and examination was done, examination under microscope was done with carf
... Show MoreThe use of non-parametric models and subsequent estimation methods requires that many of the initial conditions that must be met to represent those models of society under study are appropriate, prompting researchers to look for more flexible models, which are represented by non-parametric models
In this study, the most important and most widespread estimations of the estimation of the nonlinear regression function were investigated using Nadaraya-Watson and Regression Local Ploynomial, which are one of the types of non-linear
... Show MoreIn this paper, we derived an estimator of reliability function for Laplace distribution with two parameters using Bayes method with square error loss function, Jeffery’s formula and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived Bayesian estimator compared to the maximum likelihood of this function and moment method using simulation technique by Monte Carlo method under different Laplace distribution parameters and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator and moment estimator in all samples sizes
In this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show More