The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, several characterizations and properties of this class are also given as well. In addition, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces The third goal is to present fibrewise fuzzy types of the most importint separation axioms of ordinary fuzz topology namely fibrewise fuzzy (T_0 spaces, T_1 spaces, R_0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces and normal spaces). It also has a lot of results. The fourth goal is to learn more about fibrewise fuzzy topological spaces, particularly fibrewise fuzzy compact and fibrewise locally fuzzy compact spaces. We also look at the connections between the many fibrewise fuzzy separation axioms and fibrewise fuzzy compact (or fibrewise locally fuzzy compact) spaces. We also provide a list of possible responses The fifth goal is to present a modern concept of fibrewise topological spaces known as fibrewise fuzzy ideal topological spaces. As a result, we define fibrewise closed fuzzy ideal topological spaces, fibrewise open fuzzy ideal topological spaces, and fibrewise fuzzy j-ideal topological spaces, where j ∈{α,P,S,b ,β} The sixth goal is to present a new concepts in fibrewise bitopological spaces known as fibrewise fuzzy ij-closed, fibrewise fuzzy ij-compact, fibrewise fuzzy ij-perfect, fibrewise fuzzy weakly ij-closed, and fibrewise fuzzy almost ij-perfect. It also introduces some concepts such as contact fuzzy point, ij-adherent fuzzy point, fuzzy filter, fuzzy filter base, ij-converges to a fuzzy subset, ij-directed toward a fuzzy set, ij-fuzzy continuous, ij-fuzzy closed functions, ij-fuzzy rigid set, ij-fuzzy continuous functions, weakly ij-fuzzy closed, ij-H-fuzzy set, almost ij-perfect bitopological spaces. Obtain some of its fundamental properties and characterizations as well.
Let R be a commutative ring with unity. In this paper we introduce and study fuzzy distributive modules and fuzzy arithmetical rings as generalizations of (ordinary) distributive modules and arithmetical ring. We give some basic properties about these concepts.
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Many objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show MoreScheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy the
... Show MoreThe purpose of this paper is to study a new types of compactness in the dual bitopological spaces. We shall introduce the concepts of L-pre- compactness and L-semi-P- compactness .
The main focus of this research is to examine the Travelling Salesman Problem (TSP) and the methods used to solve this problem where this problem is considered as one of the combinatorial optimization problems which met wide publicity and attention from the researches for to it's simple formulation and important applications and engagement to the rest of combinatorial problems , which is based on finding the optimal path through known number of cities where the salesman visits each city only once before returning to the city of departure n this research , the benefits of( FMOLP) algorithm is employed as one of the best methods to solve the (TSP) problem and the application of the algorithm in conjun
... Show MoreA non-polynomial spline (NPS) is an approximation method that relies on the triangular and polynomial parts, so the method has infinite derivatives of the triangular part of the NPS to compensate for the loss of smoothness inherited by the polynomial. In this paper, we propose polynomial-free linear and quadratic spline types to solve fuzzy Volterra integral equations (FVIE) of the 2nd kind with the weakly singular kernel (FVIEWSK) and Abel's type kernel. The linear type algorithm gives four parameters to form a linear spline. In comparison, the quadratic type algorithm gives five parameters to create a quadratic spline, which is more of a credit for the exact solution. These algorithms process kernel singularities with a simple techniqu
... Show MoreTopology and its applications occupy the interest of many researching centers in the advanced world. From this point of view and because the near open sets play a very important role in general topology and they are now the research topics of many topologists worldwide and its sets doesn’t enter in fibrewise topology yet. Therefore, we use some of the near open sets to be model for introduce results and new spaces in fibrewise topological spaces. Also, there is a very important role of closure operators in constructing a topological spaces, so we introduce a new closure operators on the power set of vertices on graphs and conclusion theorems and new spaces from it. Furthermore, we discuss the relationships of connectedness between some ty
... Show More