The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, several characterizations and properties of this class are also given as well. In addition, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces The third goal is to present fibrewise fuzzy types of the most importint separation axioms of ordinary fuzz topology namely fibrewise fuzzy (T_0 spaces, T_1 spaces, R_0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces and normal spaces). It also has a lot of results. The fourth goal is to learn more about fibrewise fuzzy topological spaces, particularly fibrewise fuzzy compact and fibrewise locally fuzzy compact spaces. We also look at the connections between the many fibrewise fuzzy separation axioms and fibrewise fuzzy compact (or fibrewise locally fuzzy compact) spaces. We also provide a list of possible responses The fifth goal is to present a modern concept of fibrewise topological spaces known as fibrewise fuzzy ideal topological spaces. As a result, we define fibrewise closed fuzzy ideal topological spaces, fibrewise open fuzzy ideal topological spaces, and fibrewise fuzzy j-ideal topological spaces, where j ∈{α,P,S,b ,β} The sixth goal is to present a new concepts in fibrewise bitopological spaces known as fibrewise fuzzy ij-closed, fibrewise fuzzy ij-compact, fibrewise fuzzy ij-perfect, fibrewise fuzzy weakly ij-closed, and fibrewise fuzzy almost ij-perfect. It also introduces some concepts such as contact fuzzy point, ij-adherent fuzzy point, fuzzy filter, fuzzy filter base, ij-converges to a fuzzy subset, ij-directed toward a fuzzy set, ij-fuzzy continuous, ij-fuzzy closed functions, ij-fuzzy rigid set, ij-fuzzy continuous functions, weakly ij-fuzzy closed, ij-H-fuzzy set, almost ij-perfect bitopological spaces. Obtain some of its fundamental properties and characterizations as well.
Simulation of the Linguistic Fuzzy Trust Model (LFTM) over oscillating Wireless Sensor Networks (WSNs) where the goodness of the servers belonging to them could change along the time is presented in this paper, and the comparison between the outcomes achieved with LFTM model over oscillating WSNs with the outcomes obtained by applying the model over static WSNs where the servers maintaining always the same goodness, in terms of the selection percentage of trustworthy servers (the accuracy of the model) and the average path length are also presented here. Also in this paper the comparison between the LFTM and the Bio-inspired Trust and Reputation Model for Wireless Sensor Network
... Show MoreIn this paper, we build a fuzzy classification system for classifying the nutritional status of children under 5 years old in Iraq using the Mamdani method based on input variables such as weight and height to determine the nutritional status of the child. Also, Classifying the nutritional status faces a difficult challenge in the medical field due to uncertainty and ambiguity in the variables and attributes that determine the categories of nutritional status for children, which are relied upon in medical diagnosis to determine the types of malnutrition problems and identify the categories or groups suffering from malnutrition to determine the risks faced by each group or category of children. Malnutrition in children is one of the most
... Show MoreThis paper is concerned with introducing and studying the M-space by using the mixed degree systems which are the core concept in this paper. The necessary and sufficient condition for the equivalence of two reflexive M-spaces is super imposed. In addition, the m-derived graphs, m-open graphs, m-closed graphs, m-interior operators, m-closure operators and M-subspace are introduced. From an M-space, a unique supratopological space is introduced. Furthermore, the m-continuous (m-open and m-closed) functions are defined and the fundamental theorem of the m-continuity is provided. Finally, the m-homeomorphism is defined and some of its properties are investigated.
In this paper, we introduce the concept of fuzzy n-fold KUideal in KU-algebras, which is a generalization of fuzzy KU-ideal of KUalgebras and we obtain a few properties that is similar to the properties of fuzzy KU-ideal in KU-algebras, see [8]. Furthermore, we construct some algorithms for folding theory applied to KU-ideals in KU-algebras.
Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.
conventional FCM algorithm does not fully utilize the spatial information in the image. In this research, we use a FCM algorithm that incorporates spatial information into the membership function for clustering. The spatial function is the summation of the membership functions in the neighborhood of each pixel under consideration. The advantages of the method are that it is less
sensitive to noise than other techniques, and it yields regions more homogeneous than those of other methods. This technique is a powerful method for noisy image segmentation.
Scheduling considered being one of the most fundamental and essential bases of the project management. Several methods are used for project scheduling such as CPM, PERT and GERT. Since too many uncertainties are involved in methods for estimating the duration and cost of activities, these methods lack the capability of modeling practical projects. Although schedules can be developed for construction projects at early stage, there is always a possibility for unexpected material or technical shortages during construction stage. The objective of this research is to build a fuzzy mathematical model including time cost tradeoff and resource constraints analysis to be applied concurrently. The proposed model has been formulated using fuzzy the
... Show MoreMany objective optimizations (MaOO) algorithms that intends to solve problems with many objectives (MaOP) (i.e., the problem with more than three objectives) are widely used in various areas such as industrial manufacturing, transportation, sustainability, and even in the medical sector. Various approaches of MaOO algorithms are available and employed to handle different MaOP cases. In contrast, the performance of the MaOO algorithms assesses based on the balance between the convergence and diversity of the non-dominated solutions measured using different evaluation criteria of the quality performance indicators. Although many evaluation criteria are available, yet most of the evaluation and benchmarking of the MaOO with state-of-art a
... Show More