The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, several characterizations and properties of this class are also given as well. In addition, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces The third goal is to present fibrewise fuzzy types of the most importint separation axioms of ordinary fuzz topology namely fibrewise fuzzy (T_0 spaces, T_1 spaces, R_0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces and normal spaces). It also has a lot of results. The fourth goal is to learn more about fibrewise fuzzy topological spaces, particularly fibrewise fuzzy compact and fibrewise locally fuzzy compact spaces. We also look at the connections between the many fibrewise fuzzy separation axioms and fibrewise fuzzy compact (or fibrewise locally fuzzy compact) spaces. We also provide a list of possible responses The fifth goal is to present a modern concept of fibrewise topological spaces known as fibrewise fuzzy ideal topological spaces. As a result, we define fibrewise closed fuzzy ideal topological spaces, fibrewise open fuzzy ideal topological spaces, and fibrewise fuzzy j-ideal topological spaces, where j ∈{α,P,S,b ,β} The sixth goal is to present a new concepts in fibrewise bitopological spaces known as fibrewise fuzzy ij-closed, fibrewise fuzzy ij-compact, fibrewise fuzzy ij-perfect, fibrewise fuzzy weakly ij-closed, and fibrewise fuzzy almost ij-perfect. It also introduces some concepts such as contact fuzzy point, ij-adherent fuzzy point, fuzzy filter, fuzzy filter base, ij-converges to a fuzzy subset, ij-directed toward a fuzzy set, ij-fuzzy continuous, ij-fuzzy closed functions, ij-fuzzy rigid set, ij-fuzzy continuous functions, weakly ij-fuzzy closed, ij-H-fuzzy set, almost ij-perfect bitopological spaces. Obtain some of its fundamental properties and characterizations as well.
This work addressed the assignment problem (AP) based on fuzzy costs, where the objective, in this study, is to minimize the cost. A triangular, or trapezoidal, fuzzy numbers were assigned for each fuzzy cost. In addition, the assignment models were applied on linguistic variables which were initially converted to quantitative fuzzy data by using the Yager’sorankingi method. The paper results have showed that the quantitative date have a considerable effect when considered in fuzzy-mathematic models.
In this work, we introduce an intuitionistic fuzzy ideal on a KU-semigroup as a generalization of the fuzzy ideal of a KU-semigroup. An intuitionistic fuzzy k-ideal and some related properties are studied. Also, a number of characteristics of the intuitionistic fuzzy k-ideals are discussed. Next, we introduce the concept of intuitionistic fuzzy k-ideals under homomorphism along with the Cartesian products.
The aim of this paper is to introduce the definition of a general fuzzy norned space as a generalization of the notion fuzzy normed space after that some illustrative examples are given then basic properties of this space are investigated and proved.
For example when V and U are two general fuzzy normed spaces then the operator is a general fuzzy continuous at u V if and only if u in V implies S(u) in U.
Despite ample research on soft linear spaces, there are many other concepts that can be studied. We introduced in this paper several new concepts related to the soft operators, such as the invertible operator. We investigated some properties of this kind of operators and defined the spectrum of soft linear operator along with a number of concepts related with this definition; the concepts of eigenvalue, eigenvector, eigenspace are defined. Finally the spectrum of the soft linear operator was divided into three disjoint parts.
This article is devoted to presenting results on invariant approximations over a non-star-shsped weakly compact subset of a complete modular space by introduced a new notion called S-star-shaped with center f: if be a mapping and , . Then the existence of common invariant best approximation is proved for Banach operator pair of mappings by combined the hypotheses with Opial’s condition or demi-closeness condition
In this paper, we provide some types of - -spaces, namely, - ( )- (respectively, - ( )- , - ( )- and - ( )-) spaces for minimal structure spaces which are denoted by ( -spaces). Some properties and examples are given.
The relationships between a number of types of - -spaces and the other existing types of weaker and stronger forms of -spaces are investigated. Finally, new types of open (respectively, closed) functions of -spaces are introduced and some of their properties are studied.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
The aim of this paper is to translate the basic properties of the classical complete normed algebra to the complete fuzzy normed algebra at this end a proof of multiplication fuzzy continuous is given. Also a proof of every fuzzy normed algebra without identity can be embedded into fuzzy normed algebra with identity and is an ideal in is given. Moreover the proof of the resolvent set of a non zero element in complete fuzzy normed space is equal to the set of complex numbers is given. Finally basic properties of the resolvent space of a complete fuzzy normed algebra is given.
To damp the low-frequency oscillations which occurred due to the disturbances in the electrical power system, the generators are equipped with Power System Stabilizer (PSS) that provide supplementary feedback stabilizing signals. The low-frequency oscillations in power system are classified as local mode oscillations, intra-area mode oscillation, and interarea mode oscillations. A suitable PSS model was selected considering the low frequencies oscillation in the inter-area mode based on conventional PSS and Fuzzy Logic Controller. Two types of (FIS) Mamdani and suggeno were considered in this paper. The software of the methods was executed using MATLAB R2015a package.
The fuzzy sets theory has been applied in many fields, such as operations research, control theory and management sciences, etc. In particular, an application of this theory in decision making problem is linear programming problems with fuzzy technological coefficients numbers, as well as studying the parametric linear programming problems in the case of changes in the objective function. In this paper presenting a new procedure which connects and makes link between fuzzy linear programming problem with fuzzy technological coefficients numbers and parametric linear programming problem with change in coefficients of the objective function, then develop a numerical example illustrates the steps of solution to this kind of problems.