The aim of this research is to study some types of fibrewise fuzzy topological spaces. The six major goals are explored in this thesis. The very first goal, introduce and study the notions types of fibrewise topological spaces, namely fibrewise fuzzy j-topological spaces, Also, we introduce the concepts of fibrewise j-closed fuzzy topological spaces, fibrewise j-open fuzzy topological spaces, fibrewise locally sliceable fuzzy j-topological spaces and fibrewise locally sectionable fuzzy j-topological spaces. Furthermore, we state and prove several Theorems concerning these concepts, where j={δ,θ,α,p,s,b,β} The second goal is to introduce weak and strong forms of fibrewise fuzzy ω-topological spaces, namely the fibrewise fuzzy -ω-topological spaces, weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω- topological spaces. Also, several characterizations and properties of this class are also given as well. In addition, we focused on studying the relationship between weakly fibrewise fuzzy -ω-topological spaces and strongly fibrewise fuzzy -ω-topological spaces The third goal is to present fibrewise fuzzy types of the most importint separation axioms of ordinary fuzz topology namely fibrewise fuzzy (T_0 spaces, T_1 spaces, R_0 spaces, Hausdorff spaces, functionally Hausdorff spaces, regular spaces, completely regular spaces, normal spaces and normal spaces). It also has a lot of results. The fourth goal is to learn more about fibrewise fuzzy topological spaces, particularly fibrewise fuzzy compact and fibrewise locally fuzzy compact spaces. We also look at the connections between the many fibrewise fuzzy separation axioms and fibrewise fuzzy compact (or fibrewise locally fuzzy compact) spaces. We also provide a list of possible responses The fifth goal is to present a modern concept of fibrewise topological spaces known as fibrewise fuzzy ideal topological spaces. As a result, we define fibrewise closed fuzzy ideal topological spaces, fibrewise open fuzzy ideal topological spaces, and fibrewise fuzzy j-ideal topological spaces, where j ∈{α,P,S,b ,β} The sixth goal is to present a new concepts in fibrewise bitopological spaces known as fibrewise fuzzy ij-closed, fibrewise fuzzy ij-compact, fibrewise fuzzy ij-perfect, fibrewise fuzzy weakly ij-closed, and fibrewise fuzzy almost ij-perfect. It also introduces some concepts such as contact fuzzy point, ij-adherent fuzzy point, fuzzy filter, fuzzy filter base, ij-converges to a fuzzy subset, ij-directed toward a fuzzy set, ij-fuzzy continuous, ij-fuzzy closed functions, ij-fuzzy rigid set, ij-fuzzy continuous functions, weakly ij-fuzzy closed, ij-H-fuzzy set, almost ij-perfect bitopological spaces. Obtain some of its fundamental properties and characterizations as well.
In this paper we introduce the notion of semiprime fuzzy module as a generalization of semiprime module. We investigate several characterizations and properties of this concept.
We introduce in this paper some new concepts in soft topological spaces such as soft simply separated, soft simply disjoint, soft simply division, soft simply limit point and we define soft simply connected spaces, and we presented soft simply Paracompact spaces and studying some of its properties in soft topological spaces. In addition to introduce a new types of functions known as soft simply
In the present paper, a simply* compact spaces was introduced it defined over simply*- open set previous knowledge and we study the relation between the simply* separation axioms and the compactness, in addition to introduce a new types of functions known as 𝛼𝑆 𝑀∗ _irresolte , 𝛼𝑆 𝑀∗ __𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 and 𝑅 𝑆 𝑀∗ _ continuous, which are defined between two topological spaces.
The aim of our work is to develop a new type of games which are related to (D, WD, LD) compactness of topological groups. We used an infinite game that corresponds to our work. Also, we used an alternating game in which the response of the second player depends on the choice of the first one. Many results of winning and losing strategies have been studied, consistent with the nature of the topological groups. As well as, we presented some topological groups, which fail to have winning strategies and we give some illustrated examples. Finally, the effect of functions on the aforementioned compactness strategies was studied.
Relation on a set is a simple mathematical model to which many real-life data can be connected. A binary relation on a set can always be represented by a digraph. Topology on a set can be generated by binary relations on the set . In this direction, the study will consider different classical categories of topological spaces whose topology is defined by the binary relations adjacency and reachability on the vertex set of a directed graph. This paper analyses some properties of these topologies and studies the properties of closure and interior of the vertex set of subgraphs of a digraph. Further, some applications of topology generated by digraphs in the study of biological systems are cited.
In this paper, developed Jungck contractive mappings into fuzzy Jungck contractive and proved fuzzy fixed point for some types of generalize fuzzy Jungck contractive mappings.
In this paper we introduce the idea of the commutator of two fuzzy subsets of a group and study the concept of the commutator of two fuzzy subsets of a group .We introduce and study some of its properties .
Fuzzy logic is used to solve the load flow and contingency analysis problems, so decreasing computing time and its the best selection instead of the traditional methods. The proposed method is very accurate with outstanding computation time, which made the fuzzy load flow (FLF) suitable for real time application for small- as well as large-scale power systems. In addition that, the FLF efficiently able to solve load flow problem of ill-conditioned power systems and contingency analysis. The FLF method using Gaussian membership function requires less number of iterations and less computing time than that required in the FLF method using triangular membership function. Using sparsity technique for the input Ybus sparse matrix data gi
... Show MoreIn this paper,there are new considerations about the dual of a modular spaces and weak convergence. Two common fixed point theorems for a -non-expansive mapping defined on a star-shaped weakly compact subset are proved, Here the conditions of affineness, demi-closedness and Opial's property play an active role in the proving our results.