Due to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to evaluate the impact of the TiB2 ceramic addition. Compressive strength, Brinell hardness, porosity, and density, among other mechanical and physical properties, were also measured and characterized. It has been found that adding TiB2 to Ti increases its porosity (35.53%), compressive strength (203.04 MPa), and surface hardness (296.3 kg/mm2) but decreases its density (3.79 gm/cm3). The lightweight and strong composite could be suitable for dental implant applications.
Dental implants can be made of various materials, and amongst them, titanium and titanium alloy were the materials of choice for dental implants for many years because of their biocompatibility. The two alloys have a high level of biocompatibility, a lower modulus of elasticity, and better corrosion resistance than other alloys. Thus, they are frequently utilized in biomedical applications and mostly replace stiff fabrics. The latest advances in a new strontium oxide–cp titanium composite alloy are the main topic of this research. With regard to biomedical applications, additions of strontium oxide were synthesized at three distinct weight percentages (2%, 4%, and 6% by wt%). Powder metallurgy was used to create the alloys, which
... Show MoreBackground: Even the wide use of dental implants, still there is a proportion of implants are failed due to infection. Much considerable attention has been paid to modify the implant surface. Coating of dental implant with a biocomposite material of suitable properties can improve osseointegration. And this is the main concern of this study. The aim of present study was to evaluate the use of a biocomposite coating of dental implant with (ceramic nano Al2O3 and metalic AgNo3) on the bond strength at bone – implant interface and tissue reaction. Materials and methods: A total number of forty-eight screws, CpTi dental implant used in this study. Half of these screws were coated with a biocomposite material of nano (Al2O3and AgNo3), thi
... Show MoreBackground: The quantity and the quality of available bone, influence the clinical success of dental implants surgery. Cone beam Computed tomography is an established method for acquiring bone images before performing dental implant. Cone beam computed tomography is an essential tool for treatment planning and post-surgical procedure monitoring, by providing highly accurate 3-D images of the patient's anatomy from a single, low-radiation scan which yields high resolution images with favorable accuracy. The aim of study is the Measurement of alveolar bone (height and buccolingual width) and density in the mandible among Iraqi adult subject using CBCT for assessment of dental implant site dimensions. Material and method: The study sample in
... Show MoreThe increasing requirement and use of dental implant treatments has rendered dental implantology indispensable in dentistry. The aim of this study is to determine the optimum concentration of calcium silicate to be incorporated into a polyetherketoneketone (PEKK) matrix used as an implant material to enhance the bioactivity and mechanical properties of the composite compared with unmodified PEKK. In this study, different weight percentage (wt%) of micro-calcium silicate (m-CS) is incorporated into PEKK with ethanol as a binder. Subsequently, the mixture is dried in a forced convection oven at 120°C and poured into customized molds to fabricate a bioactive composite via compression molding (310°C, 15 MPa, and 20 min holding time
... Show MoreThe cost‐effective dual functions zeolite‐carbon composite (DFZCC) was prepared using an eco‐friendly substrate prepared from bio‐waste and an organic adhesive at intermediate conditions. The green synthesis method used in this study ensures that chemically harmless compounds are used to obtain a homogeneous distribution of zeolite over porous carbon. The greenly prepared dual‐function composite was extensively characterized using Fourier transform infrared, X‐ray diffraction, thermogravimetric analysis, N2 adsorption/desorption isotherms, field emission scanning electron microscope, dispersive analysis by X‐ray, and point of zero charges. DFZCC had a surface area o
One of the most popular causes for implant infection is dental plaque bacteria. Previous studies have shown the bactericidal effect of CO2 laser irradiation on bacteria associated with soft tissue surrounding the implant materials. No published studies have examined the effect of irradiation by CO2 laser on Streptococcus oralis and Staphylococcus aureus.The aim of this study was to evaluate the bactericidal effect of CO2 laser on bacteria that are causing dental implant infections. This study was carried out on two isolates of bacterial species out of 25 samples, isolated from patients having soft tissue infections around the dental implant. These two pure isolates including Streptococcus oralis and Staphylococcus aureus were identified
... Show MoreManganese dioxide rotating cylinder electrode prepared by anodic deposition on a graphite substrate using MnSO4 solution in the presence of 0.918 M of H2SO4. The influence of different operational parameters (MnSO4 concentration, current density, time, and rotation speed) on the structure, and morphology of MnO2 deposit film was examined widely. The structure and crystal size determined by X-ray diffraction (XRD), the morphology examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques. The γ-MnO2 obtained as the main product of the deposition process. It found that the four parameters have a significant influence on the structure, morphology, and roughness of the prepared MnO2 deposit. The crystal size in
... Show MoreIn this research four steps of the new derivatives of Naproxen drug have been made which are known as a high medicinal effectiveness; the first step involved converting Naproxen into the corresponding ester (A) by reaction Naproxen with methanol absolute in presence H2SO4. While the second step involved treatment methyl Naproxen ester (A) with hydrazine hydrate 80% in presence of ethanol .The third reaction requires synthesis of Schiff bases (C1-C10) by condensation. of Naproxen hydrazide (B) with many substituted aromatic aldehydes . Finally, the fourth step synthesized new tetrazole derivatives ( D1- D10) by the reaction of the prepared Schiff bases (in the third step) with Sodium azide in THF as a solvent .The prepared compounds wer
... Show MoreIn this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy
... Show More