This study involves the investigation of the effect of nitrogen laser with 337.1 nm wavelength on the sensitivity of Staphylococcus aureus bacteria by using local therapeutic due to burns. Thirty six isolate of Staphylococcus aureus bacteria were isolated from 25 patients suffering from sever burns, each isolate of bacteria was irradiated with nitrogen laser at (5, 10, 15 and 30) pulses/second repetition rates for 1, 5, 10, 20 and 30 minutes for each repetition rate. The effects of nitrogen laser on the local therapeutics sensitivity of bacteria were obtained using Kirby Baur method. Changes in the sensitivity of bacteria to local therapeutics (Tetracyclin, Chloramphenicol, Flumizin and Fucidin) occur at high repetition rate(30 pulses/second) and for long exposure times (10, 20 and 30 minutes) with (2 x 10-3 J/cm2) fluence.
In this paper, the concept of a hyper structure KU-algebra is introduced and some related properties are investigated. Also, some types of hyper KU-algebras are studied and the relationship between them is stated. Then a hyper KU-ideal of a hyper structure KU-algebra is studied and a few properties are obtained. Furthermore, the notion of a homomorphism is discussed.
The physician's commitment to medical insight is affected by several factors that vary from patient to patient in terms of the nature of the disease, the severity of the disease, the age of the patient, and the purpose of undergoing medical intervention. There are circumstances surrounding patients that require the physician to reduce the insight towards them, by concealing medical information. The physician must firmly commit to expanding the scope of his vision to a wider extent than in normal medical work. Therefore, we will discuss in this regard the cases in which medical explanation is reduced and the cases that require confirmation in the following order.
Owing to their remarkable characteristics, refractory molybdenum nitride (MoNx)-based compounds have been deployed in a wide range of strategic industrial applications. This review reports the electronic and structural properties that render MoNx materials as potent catalytic surfaces for numerous chemical reactions and surveys the syntheses, procedures, and catalytic applications in pertinent industries such as the petroleum industry. In particular, hydrogenation, hydrodesulfurization, and hydrodeoxygenation are essential processes in the refinement of oil segments and their conversions into commodity fuels and platform chemicals. N-vacant sites over a catalyst’s surface are a significant driver of diverse chemical phenomena. Studies on
... Show MoreFor the graph , the behavior associated with to the majority of the graphical properties of this graph is covered in this article. The reflection of the capabilities of on the Ly constructions is one of the key ideas addressed throughout this paper. For instance, by this technique we can comprehend the mechanism via which groups of relatively tiny structure are exist within Ly.
Compressing the speech reduces the data storage requirements, leading to reducing the time of transmitting the digitized speech over long-haul links like internet. To obtain best performance in speech compression, wavelet transforms require filters that combine a number of desirable properties, such as orthogonality and symmetry.The MCT bases functions are derived from GHM bases function using 2D linear convolution .The fast computation algorithm methods introduced here added desirable features to the current transform. We further assess the performance of the MCT in speech compression application. This paper discusses the effect of using DWT and MCT (one and two dimension) on speech compression. DWT and MCT performances in terms of comp
... Show MoreThe penalized least square method is a popular method to deal with high dimensional data ,where the number of explanatory variables is large than the sample size . The properties of penalized least square method are given high prediction accuracy and making estimation and variables selection
At once. The penalized least square method gives a sparse model ,that meaning a model with small variables so that can be interpreted easily .The penalized least square is not robust ,that means very sensitive to the presence of outlying observation , to deal with this problem, we can used a robust loss function to get the robust penalized least square method ,and get robust penalized estimator and
... Show MoreDiabetes is one of the increasing chronic diseases, affecting millions of people around the earth. Diabetes diagnosis, its prediction, proper cure, and management are compulsory. Machine learning-based prediction techniques for diabetes data analysis can help in the early detection and prediction of the disease and its consequences such as hypo/hyperglycemia. In this paper, we explored the diabetes dataset collected from the medical records of one thousand Iraqi patients. We applied three classifiers, the multilayer perceptron, the KNN and the Random Forest. We involved two experiments: the first experiment used all 12 features of the dataset. The Random Forest outperforms others with 98.8% accuracy. The second experiment used only five att
... Show MoreEye Detection is used in many applications like pattern recognition, biometric, surveillance system and many other systems. In this paper, a new method is presented to detect and extract the overall shape of one eye from image depending on two principles Helmholtz & Gestalt. According to the principle of perception by Helmholz, any observed geometric shape is perceptually "meaningful" if its repetition number is very small in image with random distribution. To achieve this goal, Gestalt Principle states that humans see things either through grouping its similar elements or recognize patterns. In general, according to Gestalt Principle, humans see things through genera
... Show MoreNeural cryptography deals with the problem of “key exchange” between two neural networks by using the mutual learning concept. The two networks exchange their outputs (in bits) and the key between two communicating parties ar eventually represented in the final learned weights, when the two networks are said to be synchronized. Security of neural synchronization is put at risk if an attacker is capable of synchronizing with any of the two parties during the training process.