A new method for determination of allopurinol in microgram level depending on its ability to reduce the yellow absorption spectrum of (I-3) at maximum wavelength ( ?max 350nm) . The optimum conditions such as "concentration of reactant materials , time of sitting and order of addition were studied to get a high sensitivity ( ? = 27229 l.mole-1.cm-1) sandal sensitivity : 0.0053 µg cm-2 ,with wide range of calibration curve ( 1 – 9 µg.ml-1 ) good stability (more then24 hr.) and repeatability ( RSD % : 2.1 -2.6 % ) , the Recovery % : ( 98.17 – 100.5 % ) , the Erel % ( 0.50 -1.83 % ) and the interference's of Xanthine , Cystein , Creatinine , Urea and the Glucose in 20 , 40 , 60 fold of analyate were also studied .
A dispersive liquid-liquid microextraction combines with UV-V is spectrophotometry for the preconcentration and determination of Mefenamic acid in pharmaceutical preparation was developed and introduced. The proposed method is based on the formation of charge transfer complexation between mefenamic acid and chloranil as an n-electron donor and a p-acceptor, respectively to form a violet chromogen complex measured at 542 nm. The important parameters affecting the efficiency of DLLME were evaluated and optimized. Under the optimum conditions, the calibration graphs of standard and drug, were ranged 0.03-10 µg mL-1. The limits of detection, quantification and Sandell's sensitivity were calculated. Good recoveries of MAF Std. and drug at 0.05,
... Show MoreThe UV−VIS absorption spectroscopy technique was used to study the formation of a new complex of charge transfer (CT) between bioactive organic molecules as (Nystatin) containing both a π-electrons from a conjugated system and lone-pair of electrons (amine) with Tetrachloro-1,4 benzoquinone (TCBQ) as a π-acceptor in which the transferred electron goes into its vacant anti-bonding molecular orbitals. The Tyrian purple-colored complex formed was quantitatively measured at 544 nm. This complex shows obeying Beer's law within the concentration range of (10-90) μg.ml-1The stoichiometry of the formed complex between the (Nys.) and (TCBQ) was found 1:2 as evaluated by continuous variation (Job's method) and mole ratio method The value of mola
... Show MoreThis research involves an indirect Fluorophotometric method for the determination of microgram amount of oxymetazoline hydrochloride in the concentration range 0.1-5.0 g/ml. The method is based on the oxidation of the drug by cerium sulphate solution which is acidic medium where Ce IV is reduced to Ce III which can be excited at 259 nm to give an emitted light at 377 nm which is directly proportional to the concentration of Ce III which is equivalent to Ce IV that is needed to oxidize the studied drug. The average recovery of the method is 100.19% and relative standard deviation (RSD) < 0.37% . The method have been successfully applied to the determination of the studied drug in its pure and pharmaceutical preparations and it wa
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l.mole1.cm-1 and Sandel’s index 0.0449 μg.cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg.ml-1 with relative standard deviation percent (R.S.D%) ranged between 0.26-4.71% and accuracy, expressed by recover
... Show MoreNew simple and sensitive spectrophotometric methods for the determination of paracetamol in aqueous medium were developed. The first method is based on coupling of paracetamol with p-amino-2-hydroxy sodium benzoate (AHB) in the presence of sodium periodate, as oxidizing agent, to form a brownish-orange compound which shows a λmax at 470 nm. The molar absorptivity (εmax) of the colored product was found to be (3371) l. mole1. cm-1 and Sandel’s index 0.0449 μg. cm-2. The method follows Beer’s law in the concentration range of 12.5-500.0 μg of paracetamol in a final volume of 25 ml (0.5-20.0) μg. ml-1 with relative standard deviation percent (RSD%) ranged between 0.26-4.71% and accuracy, expressed by recovery percent, 95-106% for five
... Show MoreA new, simple, rapid and sensitive spectrophotometric method for the determination of sulfamethoxazole in both pure form and pharmaceutical preparations has been reported.The adapted technique based on utilization 4-aminobenzene sulfonic acid as a new modern chromogenic through an oxidative coupling reaction with sulfamethoxazole and potassium iodate in basic media to form orange soluble dye product with absorption maxima at 490 nm. Subject to Beer's law in the range 2–32μg mL-1. The values of molarabsorption coefficient (ε) and correlation coefficient were found to be 9.118 × 103 and0.9999 respectively whereas the Sandels index was
... Show MoreNew, easy, simple, and fast spectral method for estimation of sulfamethoxazole (SMZ) in pure and pharmaceutical forms. The proposed method is based on the azotization of the drug compound by sodium nitrite in an acidic medium and then coupling with 2,3dimethyl phenol reagent (DMP) in a basic medium to yield an orange-coloured dye which shows λmax at 402 nm. Different affection of the optimization reaction has been completed, following the classical univariate sequence. The concentration of sulfamethoxazole about (1-15) μg. mL-1 with molar absorptivity of (14943.461) L.mol1 .cm-1 that obeyed Beer’s law. The detection and quantification limits were (0.852, 2.583) μg. mL-1 respectively, while the value of Sandell’s sensitivity (
... Show MoreWe propose two simple, rapid, and convenient spectrophotometric methods which are described for the determination of cephalexin in bulk and its pharmaceutical preparations. They are based on the measurement of the flame atomic emission of potassium ion (in the first method) and colorimetric determination of the green colored solution at 610 nm formed after the reaction of cephalexin with potassium permanganate as an oxidant agent (in the second method) in basic medium. The working conditions of the methods are investigated and optimized. Beer's law plot shows a good correlation in the concentration range of 5-40?g ml-1. The detection limits are 2.573,2.814 ?g ml-1 for the flame emission photometric method and 1.844,2.016 ?g ml-1 for colo
... Show MoreA simple, accurate and sensitive spectrophotometric way is used to determine Bisacodyl in pure and pharmaceutical preparations. The proposed method depends on using 2,4-Dinitrophenylhydrazine as chromogenic reagent . The method was based on the oxidative coupling reaction of Bisacodyl with 2,4-Dinitrophenylhydrazine with Sodium periodate in the presence of sodium hydroxide as alkaline media to form red water soluble dye product , that has a maximum absorption at ?max 522nm . Beer ,s law is obeyed in the concentration of (2.00–20.00) ?g.ml -1 .The molar absorptivity is (6505) L.mol-1.cm-1,a sandall sensitivity of(0.0555) ?g.cm-2), correlation coefficient of (0.9970) , Limitof detection (LOD) (0.0312 ?g.ml-1), limit of Quantitation (LOQ) (
... Show MoreIt is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations. The methods are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respec
... Show More