Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can precisely recognize the human central issues, really work on the exactness of human posture assessment, and can adjust to the intricate scenes with thick individuals and impediment. Finally, the difficulties and possible future trends are described, and the development of the field is presented.
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show More<span lang="EN-US">This paper presents the comparison between optimized unscented Kalman filter (UKF) and optimized extended Kalman filter (EKF) for sensorless direct field orientation control induction motor (DFOCIM) drive. The high performance of UKF and EKF depends on the accurate selection of state and noise covariance matrices. For this goal, multi objective function genetic algorithm is used to find the optimal values of state and noise covariance matrices. The main objectives of genetic algorithm to be minimized are the mean square errors (MSE) between actual and estimation of speed, current, and flux. Simulation results show the optimal state and noise covariance matrices can improve the estimation of speed, current, t
... Show MorePrecision is one of the main elements that control the quality of a geodetic network, which defines as the measure of the network efficiency in propagation of random errors. This research aims to solve ZOD and FOD problems for a geodetic network using Rosenbrock Method to optimize the geodetic networks by using MATLAB programming language, to find the optimal design of geodetic network with high precision. ZOD problem was applied to a case study network consists of 19 points and 58 designed distances with a priori deviation equal to 5mm, to determine the best points in the network to consider as control points. The results showed that P55 and P73 having the minimum ellipse of error and considered as control points. FOD problem was applie
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as com
... Show MoreThis search has introduced the techniques of multi-wavelet transform and neural network for recognition 3-D object from 2-D image using patches. The proposed techniques were tested on database of different patches features and the high energy subband of discrete multi-wavelet transform DMWT (gp) of the patches. The test set has two groups, group (1) which contains images, their (gp) patches and patches features of the same images as a part of that in the data set beside other images, (gp) patches and features, and group (2) which contains the (gp) patches and patches features the same as a part of that in the database but after modification such as rotation, scaling and translation. Recognition by back propagation (BP) neural network as
... Show MoreQuantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analy
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreThis paper proposes a new method Object Detection in Skin Cancer Image, the minimum
spanning tree Detection descriptor (MST). This ObjectDetection descriptor builds on the
structure of the minimum spanning tree constructed on the targettraining set of Skin Cancer
Images only. The Skin Cancer Image Detection of test objects relies on their distances to the
closest edge of thattree. Our experimentsshow that the Minimum Spanning Tree (MST) performs
especially well in case of Fogginessimage problems and in highNoisespaces for Skin Cancer
Image.
The proposed method of Object Detection Skin Cancer Image wasimplemented and tested on
different Skin Cancer Images. We obtained very good results . The experiment showed that
Three-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreThe Artificial Neural Network methodology is a very important & new subjects that build's the models for Analyzing, Data Evaluation, Forecasting & Controlling without depending on an old model or classic statistic method that describe the behavior of statistic phenomenon, the methodology works by simulating the data to reach a robust optimum model that represent the statistic phenomenon & we can use the model in any time & states, we used the Box-Jenkins (ARMAX) approach for comparing, in this paper depends on the received power to build a robust model for forecasting, analyzing & controlling in the sod power, the received power come from
... Show More