Human posture estimation is a crucial topic in the computer vision field and has become a hotspot for research in many human behaviors related work. Human pose estimation can be understood as the human key point recognition and connection problem. The paper presents an optimized symmetric spatial transformation network designed to connect with single-person pose estimation network to propose high-quality human target frames from inaccurate human bounding boxes, and introduces parametric pose non-maximal suppression to eliminate redundant pose estimation, and applies an elimination rule to eliminate similar pose to obtain unique human pose estimation results. The exploratory outcomes demonstrate the way that the proposed technique can precisely recognize the human central issues, really work on the exactness of human posture assessment, and can adjust to the intricate scenes with thick individuals and impediment. Finally, the difficulties and possible future trends are described, and the development of the field is presented.
Traditionally, path selection within routing is formulated as a shortest path optimization problem. The objective function for optimization could be any one variety of parameters such as number of hops, delay, cost...etc. The problem of least cost delay constraint routing is studied in this paper since delay constraint is very common requirement of many multimedia applications and cost minimization captures the need to
distribute the network. So an iterative algorithm is proposed in this paper to solve this problem. It is appeared from the results of applying this algorithm that it gave the optimal path (optimal solution) from among multiple feasible paths (feasible solutions).
In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f
... Show MoreIn the past two decades, maritime transport traffic has increased, especially in the case of container flow. The BAP (Berth Allocation Problem) (BAP) is a main problem to optimize the port terminals. The current manuscript explains the DBAP problems in a typical arrangement that varies from the conventional separate design station, where each berth can simultaneously accommodate several ships when their entire length is less or equal to length. Be a pier, serve. This problem was then solved by crossing the Red Colobuses Monkey Optimization (RCM) with the Genetic Algorithm (GA). In conclusion, the comparison and the computational experiments are approached to demonstrate the effectiveness of the proposed method contrasted with other
... Show MoreOne of the most difficult issues in the history of communication technology is the transmission of secure images. On the internet, photos are used and shared by millions of individuals for both private and business reasons. Utilizing encryption methods to change the original image into an unintelligible or scrambled version is one way to achieve safe image transfer over the network. Cryptographic approaches based on chaotic logistic theory provide several new and promising options for developing secure Image encryption methods. The main aim of this paper is to build a secure system for encrypting gray and color images. The proposed system consists of two stages, the first stage is the encryption process, in which the keys are genera
... Show MoreThe research dealt with the subject of measuring the competitive performance of the National Insurance Company and some of its branches (Basra, Ninwa, Kirkuk and Babil), Depending on the Revenue Growth Index at the activity level, and the Revealed Comparative Advantage Index RCAIAt the branch level,To measure the competitiveness of the company And some branches, As the problem of research in the lack of adoption by some companies in the insurance service sector on scientific indicators to measure their competitive performance, The aims of the research is to measure the competitiveness of the National Insurance Company, as well as the competitiveness of its branches according to the scientific method, One of the main Conclusions of the re
... Show MoreThe partial level density PLD of pre-equilibrium reactions that are described by Ericson’s formula has been studied using different formulae of single particle level density . The parameter was used from the equidistant spacing model (ESM) model and the non- equidistant spacing model (non-ESM) and another formula of are derived from the relation between and level density parameter . The formulae used to derive are the Roher formula, Egidy formula, Yukawa formula, and Thomas –Fermi formula. The partial level density results that depend on from the Thomas-Fermi formula show a good agreement with the experimental data.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreAbstract: Background: Optical biosensors offer excellent properties and methods for detecting bacteria when compared to traditional analytical techniques. It allows direct detection of many biological and chemical materials. Bacteria are found in the human body naturally non-pathogenic and pathologically, as they are found in other living organisms. One of these bacteria is Escherichia coli (E. coli) which are found in the human body in its natural and pathogenic form. E.coli bacteria cause many diseases, including Stomach, intestines, urinary system infections, and others. The aim of this study: is sensing and differentiation between normal flora and pathogenic E.coli. Material and method:
... Show More