Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.
Six proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show MoreNurse scheduling problem is one of combinatorial optimization problems and it is one of NP-Hard problems which is difficult to be solved as optimal solution. In this paper, we had created an proposed algorithm which it is hybrid simulated annealing algorithm to solve nurse scheduling problem, developed the simulated annealing algorithm and Genetic algorithm. We can note that the proposed algorithm (Hybrid simulated Annealing Algorithm(GS-h)) is the best method among other methods which it is used in this paper because it satisfied minimum average of the total cost and maximum number of Solved , Best and Optimal problems. So we can note that the ratios of the optimal solution are 77% for the proposed algorithm(GS-h), 28.75% for Si
... Show MoreIn this work , a hybrid scheme tor Arabic speech for the recognition
of the speaker verification is presented . The scheme is hybrid as utilizes the traditional digi tal signal processi ng and neural network . Kohonen neural network has been used as a recognizer tor speaker verification after extract spectral features from an acoustic signal by Fast Fourier Transformation Algorithm(FFT) .
The system was im plemented using a PENTIUM processor , I000
MHZ compatible and MS-dos 6.2 .
The purpose of this paper is to develop a hybrid conceptual model for building information modelling (BIM) adoption in facilities management (FM) through the integration of the technology task fit (TTF) and the unified theory of acceptance and use of technology (UTAUT) theories. The study also aims to identify the influence factors of BIM adoption and usage in FM and identify gaps in the existing literature and to provide a holistic picture of recent research in technology acceptance and adoption in the construction industry and FM sector.
Banking reforms in many countries have focused on the efficiency enhance of the banking sector, including Iraq, in terms of indicative steps based on recommendations, policies and standards developed by international organizations, foremost of which are Basel III. In this paper, it has tried to highlight the reforms in Basel III and the impact of these reforms on the stability of the banking system in Iraq. As the research derives its importance from the idea that the sound banking system consists of a group of banks capable of employing their assets and obligations efficiently in financial intermediation and enjoying financial solvency. The stability of the banking system is an important factor in achieving the leading role of t
... Show MoreThe performance measures and traditional methods used in management accounting is no longer able to provide convenient to evaluate the performance of economic units in the modern manufacturing environment information، and so this information is more important and feasibility must be Mistohat of all the company's activities and functions، and it is a problem Find the inadequacy of information management accounting that contribute to meet the needs of the upper levels of management to cope with the problems resulting from the increased size and complexity of the business، and lack of management accounting information and methods used in the performance evaluation، which reflected negatively on the value chain activities and then on the
... Show MoreAt the heart of every robust economy is a vital banking system. The functional banking system can effectively perform several functions such as mobilizing savings, allocating credit, monitoring managers, transforming risks, and facilitating the financial transactions. This paper aims to measure the impact of banking system development on economic growth in Iraq. Credit to private sector divided by GDP used as a proxy of banking development. Real per capita GDP used as a proxy of economic growth. By using Autoregressive Distributed Lag (ARDL) model, the paper finds that the undeveloped Iraqi banking system could not promote economic growth in the country. Therefore, a variety of policies need to be taken to spur the role of bankin
... Show MoreThe paper deals with claims in construction projects in Iraq and studies their types, causes, impacts, resolution methods and then proposes a management system to control the impacts of claims. Two parts have been done to achieve the research objective (theoretical part and practical part). The findings showed that the main types of the claims are extra work claims, different site condition claims, delay claims and the main causes of the claims are variation of the orders, design errors and omission, delay in payments by owner, variation in quantities and scheduling errors. The claims have bad impacts on the cost by increasing (10% to 25%) and also on the duration of the project by increasing from (25% to 50%).The negotiation is the main
... Show More