Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.
The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficac
... Show MoreTremendous efforts have been exerted to understand first language acquisition to facilitate second language learning. The problem lies in the difficulty of mastering English language and adapting a theory that helps in overcoming the difficulties facing students. This study aims to apply Thomasello's theory of language mastery through usage. It assumes that adults can learn faster than children and can learn the language separately, and far from academic education. Tomasello (2003) studied the stages of language acquisition for children, and developed his theory accordingly. Some studies, such as: (Ghalebi and Sadighi, 2015, Arvidsson, 2019; Munoz, 2019; Verspoor and Hong, 2013) used this theory when examining language acquisition. Thus,
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreConsistent "with the thought of tax talk is unified tax natural evolution for him, as the application leads to the inclusion of tax all branches of income and its sources and through truncated part of this entry through the application of price ascending it, it means the procedures of tax reform. Taxes on total income characterized by giving a clear picture of the total income of the taxpayer and its financial situation and its burden family which allows granting exemptions, downloads, and application of prices that fit this case. This requires reconsideration of the structure of the tax system in force and the transition from a system specific taxes to the tax system on the total income of the integration of income from the rental of re
... Show MoreAbstract
The research the impact of the application of some of the production system tools in the specified time, which can be adapted in the service sectors (banking sector) over the improvement and increase the quality of banking services, and highlights the research problem in the low quality of banking services provided to customers because of the reliance on traditional banking systems in the provision of services Because of the lack keep pace with global developments in the banking industry, and the goal of research is to clarify the applicability of the production system in the time specified in the service sector and th
... Show MoreIn this research a recent developed practical modeling technique is applied for the glucose regulation system identification. By using this technique a set of mathematical models is obtained instead of single one to compensate for the loss of information caused by the optimization technique in curve fitting algorithms, the diversity of members inside the single set is interpreted in term of restricted range of its parameters, also a diagnosis criteria is developed for detecting any disorder in the glucose regulation system by investigating the influence of variation of the parameters on the response of the system, this technique is applied in this research practically for 20 cases with association of National Center for
... Show MoreWe must live in an era dominated by the call for equality between men and women, in which the voices of advocates of gender integration were heard. After women opened their doors to compete with their brother, Knowledge, and culture in the various forms of life, language as a science of the time and knowledge of the other had to match this reality and express the most accurate expression of this task
Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre
... Show MoreAutomatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris
... Show More