Recommendation systems are now being used to address the problem of excess information in several sectors such as entertainment, social networking, and e-commerce. Although conventional methods to recommendation systems have achieved significant success in providing item suggestions, they still face many challenges, including the cold start problem and data sparsity. Numerous recommendation models have been created in order to address these difficulties. Nevertheless, including user or item-specific information has the potential to enhance the performance of recommendations. The ConvFM model is a novel convolutional neural network architecture that combines the capabilities of deep learning for feature extraction with the effectiveness of factorization machines for recommendation tasks. The present work introduces a novel hybrid deep factorization machine (FM) model, referred to as ConvFM. The ConvFM model use a combination of feature extraction and convolutional neural networks (CNNs) to extract features from both individuals and things, namely movies. Following this, the proposed model employs a methodology known as factorization machines, which use the FM algorithm. The focus of the CNN is on the extraction of features, which has resulted in a notable improvement in performance. In order to enhance the accuracy of predictions and address the challenges posed by sparsity, the proposed model incorporates both the extracted attributes and explicit interactions between items and users. This paper presents the experimental procedures and outcomes conducted on the Movie Lens dataset. In this discussion, we engage in an analysis of our research outcomes followed by provide recommendations for further action.
This paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closedloop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadin
... Show Moreواحدة من أكثر مواد السيراميك الهيكلية الواعدة هي كربيد السيليكون(SiC) ، حيث له خصائص حرارية وكهروميكانيكية ممتازة. هذه الخصائص مفيدة ل CMC لتعزيز أداء المركب خاصة عند إضافات النانو المتكاملة. في هذا البحث, تم تصنيع مركب SiC من SiC بثلاثة تركيزات مع ZnO و Si. تم اختبار الخواص المغناطيسية لجميع المخاليط باستخدام مراقبة العينة الاهتزازية (VSM). تم تلبيد العينات الخضراء في فرن التلبيد عند 1600 درجة مئوية في بيئة النيتروجي
... Show MoreThis paper demonstrates the spatial response uniformity (SRU) of two types of heterojunctions (CdS, PbS /Si) laser detectors. The spatial response nonuniformity of these heterojunctions is not significant and it is negligible in comparison with p+- n silicon photodiode. Experimental results show that the uniformity of CdS /Si is better than that of PbS /Si heterojunction
This study employs wavelet transforms to address the issue of boundary effects. Additionally, it utilizes probit transform techniques, which are based on probit functions, to estimate the copula density function. This estimation is dependent on the empirical distribution function of the variables. The density is estimated within a transformed domain. Recent research indicates that the early implementations of this strategy may have been more efficient. Nevertheless, in this work, we implemented two novel methodologies utilizing probit transform and wavelet transform. We then proceeded to evaluate and contrast these methodologies using three specific criteria: root mean square error (RMSE), Akaike information criterion (AIC), and log
... Show MoreClassification of imbalanced data is an important issue. Many algorithms have been developed for classification, such as Back Propagation (BP) neural networks, decision tree, Bayesian networks etc., and have been used repeatedly in many fields. These algorithms speak of the problem of imbalanced data, where there are situations that belong to more classes than others. Imbalanced data result in poor performance and bias to a class without other classes. In this paper, we proposed three techniques based on the Over-Sampling (O.S.) technique for processing imbalanced dataset and redistributing it and converting it into balanced dataset. These techniques are (Improved Synthetic Minority Over-Sampling Technique (Improved SMOTE), Border
... Show MoreIn the field of data security, the critical challenge of preserving sensitive information during its transmission through public channels takes centre stage. Steganography, a method employed to conceal data within various carrier objects such as text, can be proposed to address these security challenges. Text, owing to its extensive usage and constrained bandwidth, stands out as an optimal medium for this purpose. Despite the richness of the Arabic language in its linguistic features, only a small number of studies have explored Arabic text steganography. Arabic text, characterized by its distinctive script and linguistic features, has gained notable attention as a promising domain for steganographic ventures. Arabic text steganography harn
... Show MoreBlockchain has garnered the most attention as the most important new technology that supports recent digital transactions via e-government. The most critical challenge for public e-government systems is reducing bureaucracy and increasing the efficiency and performance of administrative processes in these systems since blockchain technology can play a role in a decentralized environment and execute a high level of security transactions and transparency. So, the main objectives of this work are to survey different proposed models for e-government system architecture based on blockchain technology implementation and how these models are validated. This work studies and analyzes some research trends focused on blockchain
... Show More