Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.
This study aims to investigate the possible role of circulating microRNA-142-3p (miR-142-3p) in the
development of graves disease (GD) and its association with the antibody directed against thyroid
stimulating hormone receptor (TSHR-Ab) production in patients with GD. Forty patients with positive
TSHR-Ab enrolled in this study were divided ,based on treatment, into (22 untreated (newly diagnosed) and
18 treated patients) and based on family history (30 with positive family history and 10 with negative family
history). In addition to forty healthy subjects with sex and age matching as a control group. The expression
level of circulating miR-142-3p was determined by two steps reverse transcription polymerase c
Background: Moyamoya disease (MMD) is a rare cerebrovascular disease characterized by bilateral stenosis starting at the supraclinoid internal carotid artery (ICA), with the development of a collateral network of vessels. It is an established cause of stroke in the pediatric age group. Despite its increasing prevalence in various parts of the world, it remains largely underrecognized in the Middle East, particularly in Iraq. This is the first case of MMD in an Iraqi patient undergoing surgery. Case description: A 12-year-old boy presents with a 3-months history of progressive behavioural changes. MRI revealed diffuse infarcts of different ages. MRA and CT angiography revealed extensive asymmetrical steno-occlusive changes of t
... Show MoreThe research discusses the need to find the innovative structures and methodologies for developing Human Capital (HC) in Iraqi Universities. One of the most important of these structures is Communities of Practice (CoPs) which contributes to develop HC by using learning, teaching and training through the conversion speed of knowledge and creativity into practice. This research has been used the comparative approach through employing the methodology of Data Envelopment Analysis (DEA) by using (Excel 2010 - Solver) as a field evidence to prove the role of CoPs in developing HC. In light of the given information, a researcher adopted on an archived preliminary data about (23) colleges at Mosul University as a deliberate sample for t
... Show MoreThe proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreObjective: The study aimed to screen the prepubertal children for idiopathic scoliosis at earlier stages, and find
out the relationship between idiopathic scoliosis and demographic data such as age, sex, body mass index,
heavy backpacks, and heart & lung diseases.
Methodology: A descriptive study was conducted on screening program for prepubertal children in primary
schools at Baghdad city, starting from 24th of February to the end of October 2010. Non- probability
(purposive) sample of 510 prepubertal children were chosen from primary schools of both sides of Al-Karkh
and Al-Russafa sectors. Data was collected through a specially constructed questionnaire format include (24)
items multiple choice questions, and
In the current worldwide health crisis produced by coronavirus disease (COVID-19), researchers and medical specialists began looking for new ways to tackle the epidemic. According to recent studies, Machine Learning (ML) has been effectively deployed in the health sector. Medical imaging sources (radiography and computed tomography) have aided in the development of artificial intelligence(AI) strategies to tackle the coronavirus outbreak. As a result, a classical machine learning approach for coronavirus detection from Computerized Tomography (CT) images was developed. In this study, the convolutional neural network (CNN) model for feature extraction and support vector machine (SVM) for the classification of axial
... Show MoreWhen optimizing the performance of neural network-based chatbots, determining the optimizer is one of the most important aspects. Optimizers primarily control the adjustment of model parameters such as weight and bias to minimize a loss function during training. Adaptive optimizers such as ADAM have become a standard choice and are widely used for their invariant parameter updates' magnitudes concerning gradient scale variations, but often pose generalization problems. Alternatively, Stochastic Gradient Descent (SGD) with Momentum and the extension of ADAM, the ADAMW, offers several advantages. This study aims to compare and examine the effects of these optimizers on the chatbot CST dataset. The effectiveness of each optimizer is evaluat
... Show MoreSeventy four Iraqi breast cancer paraffin blocks were collected from patients were attended to center health laboratory, histopathology department, Bagdad, Iraq. The patients information’s which included: name, age, and the pathological stage, grade, tumor size were obtained from the clinical records of the patients also relation with sex hormones was recorded. The cases which has been taken included invasive ductal and invasive lobular carcinoma type Women age were ranged from 24-80 years peak age frequency of tumor occurred in the category of more than 40 years old. Immunohistochemical expression of her-2/neu was from total 74 cases of infiltrative ductal carcinoma cases, 27(36.49%)were positive for Her-2/neu expression, 47(63.51%) were
... Show MoreThe selection of proper field survey parameters of electrical resistivity can significantly provide efficient results within a reasonable time and cost. Four electrode arrays of 2D Electric Resistivity Imaging (ERI) surveys were applied to characterize and detect subsurface archaeological bodies and to determine the appropriate array type that should be applied in the field survey. This research is to identify the subsurface features of the Borsippa archaeological site, Babylon Governorate, Middle Iraq. Synthetic modeling studies were conducted to determine the proper array and parameters for imaging the shallow subsurface features or targets. The efficiency of many array types has been tested for the detection the buried archaeolog
... Show More