Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.
The use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show MoreAbstract
This study aimed to survey fungi associated with the product Indomie and Chips being the trades Iargely by a very important segment of society who are the children, beside consumed by adults, but less so, as the survey results to accompany some fungui samples sterile showed proportions presence included various fungi like. Aspergillus flavus, Aspergillus niger, Penicillium Spp., Fusarium graminearum, F.moniliforme, Alternaria alternate and Rhizopus Spp., and other fungi sterile are not diagnosed. The results showed large dominion fungi A. niger by presence sterile samples of both producers, followed by infection in Fusarium Spp., Penicillium Spp., and A. alternata by infection percentage 55, 20 and 17% respectively for the pr
There are many problems facing the economic entities as a result of its mass production &variation of its products , the matter which had increased the need & importance of cost accounting which is regarded a main tool for the managerial control.
The actual costing system is unable to meet the contemporary management needs ,so the Standard costing system appear to provide the management with required information to perform its functions by the best use& way.
This research aims to determine the standard cost for the direct material for oil extraction activity by applying it in the north oil company.
The current study uses the flame fragment deposition (FFD) method to synthesize carbon nanotubes (CNTs) from Iraqi liquefied petroleum gas (LPG), which is used as a carbon source. To carry out the synthesis steps, a homemade reactor was used. To eliminate amorphous impurities, the CNTs were sonicated in a 30 percent hydrogen peroxide (H2O2) solution at ambient temperature. To remove the polycyclic aromatic hydrocarbons (PAHs) generated during LPG combustion, sonication in an acetone bath is used. The produced products were investigated and compared with standard Multi-walled carbon nanotube MWCNTs (95%), Sigma, Aldrich, using X-ray diffraction (XRD), thermo gravimetric analysis (TGA), Raman spectroscopy, scanning el
... Show MoreIn this research, an analysis for the standard Hueckel edge detection algorithm behaviour by using three dimensional representations for the edge goodness criterion is presents after applying it on a real high texture satellite image, where the edge goodness criterion is analysis statistically. The Hueckel edge detection algorithm showed a forward exponential relationship between the execution time with the used disk radius. Hueckel restrictions that mentioned in his papers are adopted in this research. A discussion for the resultant edge shape and malformation is presented, since this is the first practical study of applying Hueckel edge detection algorithm on a real high texture image containing ramp edges (satellite image).
Although the Wiener filtering is the optimal tradeoff of inverse filtering and noise smoothing, in the case when the blurring filter is singular, the Wiener filtering actually amplify the noise. This suggests that a denoising step is needed to remove the amplified noise .Wavelet-based denoising scheme provides a natural technique for this purpose .
In this paper a new image restoration scheme is proposed, the scheme contains two separate steps : Fourier-domain inverse filtering and wavelet-domain image denoising. The first stage is Wiener filtering of the input image , the filtered image is inputted to adaptive threshold wavelet
... Show More<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show Moreمشكلة البحث واهميته :-
تنبع مشكلة البحث الحالي من الآثار الاجتماعية سواء أكان على مستوى الفرد أم المجتمع . أذ العزوف عن الزواج مشكلة اجتماعية بل انها مشكلة حقيقية , فهناك عزوف من الشباب عن الزواج وقد اصبح العدد كبيرا في السنوات الأخيرة وقد بينت إحصائية متخصصة بأن عدد العازفين عن الزواج يقدر بأكثر من مليون شاب وشابة (2-2ص3) . وهذا يعود لأسباب عديدة فقد يكون العامل الاقتصاد
... Show More