Preferred Language
Articles
/
bsj-9740
Early Diagnose Alzheimer's Disease by Convolution Neural Network-based Histogram Features Extracting and Canny Edge
...Show More Authors

Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Apr 02 2023
Journal Name
Narst 2023 Annual International Conference
Measuring Claim-Evidence-Reasoning Using Scenario-based Assessments Grounded in Real-world Issues
...Show More Authors

Improving students’ use of argumentation is front and center in the increasing emphasis on scientific practice in K-12 Science and STEM programs. We explore the construct validity of scenario-based assessments of claim-evidence-reasoning (CER) and the structure of the CER construct with respect to a learning progression framework. We also seek to understand how middle school students progress. Establishing the purpose of an argument is a competency that a majority of middle school students meet, whereas quantitative reasoning is the most difficult, and the Rasch model indicates that the competencies form a unidimensional hierarchy of skills. We also find no evidence of differential item functioning between different scenarios, suggesting

... Show More
View Publication Preview PDF
Publication Date
Tue Jul 24 2018
Journal Name
Sensors
Adaptive Windowing Framework for Surface Electromyogram-Based Pattern Recognition System for Transradial Amputees
...Show More Authors

Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signa

... Show More
View Publication
Crossref (25)
Clarivate Crossref
Publication Date
Thu Nov 20 2025
Journal Name
Journal Of The College Of Basic Education
Fuzzy Nonparametric Regression Model Estimation Based on some Smoothing Techniques With Practical Application
...Show More Authors

In this research, we use fuzzy nonparametric methods based on some smoothing techniques, were applied to real data on the Iraqi stock market especially the data about Baghdad company for soft drinks for the year (2016) for the period (1/1/2016-31/12/2016) .A sample of (148) observations was obtained in order to construct a model of the relationship between the stock prices (Low, high, modal) and the traded value by comparing the results of the criterion (G.O.F.) for three techniques , we note that the lowest value for this criterion was for the K-Nearest Neighbor at Gaussian function .

View Publication Preview PDF
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
An exploratory study of history-based test case prioritization techniques on different datasets
...Show More Authors

In regression testing, Test case prioritization (TCP) is a technique to arrange all the available test cases. TCP techniques can improve fault detection performance which is measured by the average percentage of fault detection (APFD). History-based TCP is one of the TCP techniques that consider the history of past data to prioritize test cases. The issue of equal priority allocation to test cases is a common problem for most TCP techniques. However, this problem has not been explored in history-based TCP techniques. To solve this problem in regression testing, most of the researchers resort to random sorting of test cases. This study aims to investigate equal priority in history-based TCP techniques. The first objective is to implement

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Mon Mar 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Building a High Accuracy Transfer Learning-Based Quality Inspection System at Low Costs
...Show More Authors

      Products’ quality inspection is an important stage in every production route, in which the quality of the produced goods is estimated and compared with the desired specifications. With traditional inspection, the process rely on manual methods that generates various costs and large time consumption. On the contrary, today’s inspection systems that use modern techniques like computer vision, are more accurate and efficient. However, the amount of work needed to build a computer vision system based on classic techniques is relatively large, due to the issue of manually selecting and extracting features from digital images, which also produces labor costs for the system engineers.       In this research, we pr

... Show More
Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Nov 01 2009
Journal Name
Tencon 2009 - 2009 Ieee Region 10 Conference
The effect of using XCAST based routing protocol in wireless ad hoc networks
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Nov 29 2019
Journal Name
Iraqi Journal Of Physics
Acetic acid concentration estimation using plastic optical fiber sensor based surface Plasmon resonance
...Show More Authors

Optical fiber chemical sensor based surface Plasmon resonance for sensing and measuring the refractive index and concentration for Acetic acid is designed and implemented during this work. Optical grade plastic optical fibers with a diameter of 1000μm were used with a diameter core of 980μm and a cladding of 20μm, where the sensor is fabricated by a small part (10mm) of optical fiber in the middle is embedded in a resin block and then the polishing process is done, after that it is deposited with about (40nm) thickness of gold metal and the Acetic acid is placed on the sensing probe.

View Publication Preview PDF
Crossref (9)
Crossref
Publication Date
Mon Jun 01 2020
Journal Name
Sensing And Bio-sensing Research
Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles–screen printed carbon electrode
...Show More Authors

View Publication
Scopus (38)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Tue Dec 01 2020
Journal Name
Minar International Journal Of Applied Sciences And Technology
INNOVATE GESTATIONAL AGE ESTIMATION MODEL FOR IRAQI FETUSES BASED ON ULTRASOUND IMAGES MEASUREMENTS
...Show More Authors

Imaging by Ultrasound (US) is an accurate and useful modality for the assessment of gestational age (GA), estimation fetal weight, and monitoring the fetal growth during pregnancy, is a routine part of prenatal care, and that can greatly impact obstetric management. Estimation of GA is important in obstetric care, making appropriate management decisions requires accurate appraisal of GA. Accurate GA estimation may assist obstetricians in appropriately counseling women who are at risk of a preterm delivery about likely neonatal outcomes, and it is essential in the evaluation of the fetal growth and detection of intrauterine growth restriction. There are many formulas are used to estimate fetal GA in the world, but it's not specify fo

... Show More
View Publication
Crossref