Alzheimer's disease (AD) increasingly affects the elderly and is a major killer of those 65 and over. Different deep-learning methods are used for automatic diagnosis, yet they have some limitations. Deep Learning is one of the modern methods that were used to detect and classify a medical image because of the ability of deep Learning to extract the features of images automatically. However, there are still limitations to using deep learning to accurately classify medical images because extracting the fine edges of medical images is sometimes considered difficult, and some distortion in the images. Therefore, this research aims to develop A Computer-Aided Brain Diagnosis (CABD) system that can tell if a brain scan exhibits indications of Alzheimer's disease. The system employs MRI and feature extraction methods to categorize images. This paper adopts the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset includes functional MRI and Positron-Version Tomography scans for Alzheimer's patient identification, which were produced for people with Alzheimer's as well as typical individuals. The proposed technique uses MRI brain scans to discover and categorize traits utilizing the Histogram Features Extraction (HFE) technique to be combined with the Canny edge to representing the input image of the Convolutional Neural Networks (CNN) classification. This strategy keeps track of their instances of gradient orientation in an image. The experimental result provided an accuracy of 97.7% for classifying ADNI images.
Renewable energy technology is growing fast especially photovoltaic (PV) system to move the conventional electricity generation and distribution towards smart grid. However, similar to monthly electricity bill, the PV energy producers can only monitor their energy PV generation once a month. Any malfuntion in PV system components may reduce the performance of the system without notice. Thus, developing a real-time monitoring system of PV production is very crucial for early detection. In addition, electricity consumption is also important to be monitored more frequently to increase energy savings awareness among consumers. Hardware based Internet-of-Thing (IoT) monitoring and control system is widely used. However, the implementation of
... Show Moremajor goal of the next-generation wireless communication systems is the development of a reliable high-speed wireless communication system that supports high user mobility. They must focus on increasing the link throughput and the network capacity. In this paper a novel, spectral efficient system is proposed for generating and transmitting twodimensional (2-D) orthogonal frequency division multiplexing (OFDM) symbols through 2- D inter-symbol interference (ISI) channel. Instead of conventional data mapping techniques, discrete finite Radon transform (FRAT) is used as a data mapping technique due to the increased orthogonality offered. As a result, the proposed structure gives a significant improvement in bit error rate (BER) performance. Th
... Show MoreThis paper proposes a collaborative system called Recycle Rewarding System (RRS), and focuses on the aspect of using information communication technology (ICT) as a tool to promote greening. The idea behind RRS is to encourage recycling collectors by paying them for earning points. In doing so, both the industries and individuals reap the economical benefits of such system. Finally, and more importantly, the system intends to achieve a green environment for the Earth. This paper discusses the design and implementation of the RRS, involves: the architectural design, selection of components, and implementation issues. Five modules are used to construct the system, namely: database, data entry, points collecting and recording, points reward
... Show MorePolymer electrolytes were prepared using the solution cast technology. Under some conditions, the electrolyte content of polymers was analyzed in constant percent of PVA/PVP (50:50), ethylene carbonate (EC), and propylene carbonate (PC) (1:1) with different proportions of potassium iodide (KI) (10, 20, 30, 40, 50 wt%) and iodine (I2) = 10 wt% of salt. Fourier Transmission Infrared (FTIR) studies confirmed the complex formation of polymer blends. Electrical conductivity was calculated with an impedance analyzer in the frequency range 50 Hz–1MHz and in the temperature range 293–343 K. The highest electrical conductivity value of 5.3 × 10-3 (S/cm) was observed for electrolytes with 50 wt% KI concentration at room
... Show MoreIron–phthalocyanine (FePc) organic photoconductive detector was fabricated using pulsed laser deposition (PLD) technique to work in ultraviolet (UV) and visible regions. The organic semiconductor material (iron phthalocyanine) was deposited on n-type silicon wafer (Si) substrates at different thicknesses (100, 200 and 300) nm. FePc organic photoconductive detector has been improved by two methods: the first is to manufacture the detector on PSi substrates, and the second is by coating the detector with polyamide–nylon polymer to enhance the photoconductivity of the FePc detector. The current–voltage (I–V) characteristics, responsivity, photocurrent gain, response time and the quantum efficiency of the fabricated photoconduc
... Show MoreAn intelligent software defined network (ISDN) based on an intelligent controller can manage and control the network in a remarkable way. In this article, a methodology is proposed to estimate the packet flow at the sensing plane in the software defined network-Internet of Things based on a partial recurrent spike neural network (PRSNN) congestion controller, to predict the next step ahead of packet flow and thus, reduce the congestion that may occur. That is, the proposed model (spike ISDN-IoT) is enhanced with a congestion controller. This controller works as a proactive controller in the proposed model. In addition, we propose another intelligent clustering controller based on an artificial neural network, which operates as a reactive co
... Show MoreCapacitive–resistive humidity sensors based on polythiophene (P3HT) organic semiconductor as an active material hybrid with three types of metallic nanoparticles (NP) (Ag, Al, and Cu) were synthesized by pulsed laser ablation (PLA). The hybrid P3HT/metallic nanoparticles were deposited on indium-tin-oxide (ITO) substrate at room temperature. The surface morphology of theses samples was studied by using field emission scanning electron micrographs (FE-SEM), which indicated the formation of nanoparticles with grain size of about 50nm. The electrical characteristics of the sensors were examined as a function of the relative humidity levels. The sensors showed an increase in the capacitance with variation in the humidity level. Whil
... Show MoreData steganography is a technique used to hide data, secret message, within another data, cover carrier. It is considered as a part of information security. Audio steganography is a type of data steganography, where the secret message is hidden in audio carrier. This paper proposes an efficient audio steganography method that uses LSB technique. The proposed method enhances steganography performance by exploiting all carrier samples and balancing between hiding capacity and distortion ratio. It suggests an adaptive number of hiding bits for each audio sample depending on the secret message size, the cover carrier size, and the signal to noise ratio (SNR). Comparison results show that the proposed method outperforms state of the art methods
... Show More