Interval methods for verified integration of initial value problems (IVPs) for ODEs have been used for more than 40 years. For many classes of IVPs, these methods have the ability to compute guaranteed error bounds for the flow of an ODE, where traditional methods provide only approximations to a solution. Overestimation, however, is a potential drawback of verified methods. For some problems, the computed error bounds become overly pessimistic, or integration even breaks down. The dependency problem and the wrapping effect are particular sources of overestimations in interval computations. Berz (see [1]) and his co-workers have developed Taylor model methods, which extend interval arithmetic with symbolic computations. The latter is an effective tool for reducing both the dependency problem and the wrapping effect. By construction, Taylor model methods appear particularly suitable for integrating nonlinear ODEs. In this paper, we analyze Taylor model based integration of ODEs and compare Taylor model with traditional enclosure methods for IVPs for ODEs. More advanced Taylor model integration methods are discussed in the algorithm (1). For clarity, we summarize the major steps of the naive Taylor model method as algorithm 1.
Let R be an associative ring with identity and let M be right R-module M is called μ-semi hollow module if every finitely generated submodule of M is μ-small submodule of M The purpose of this paper is to give some properties of μ-semi hollow module. Also, we gives conditions under, which the direct sum of μ-semi hollow modules is μ-semi hollow. An R-module is said has a projective μ-cover if there exists an epimorphism
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.
Many letters and theses written on the subject of consensus, as well as in measurement,
But we tried to address a topic of consensus
Building a blind measuring guide.
We have tried to explain the meaning of convening, then the statement of consensus in language and terminology and then the statement of measurement
Also, we have shown the types of consensus mentioned by the jurists, and this is how much was in the first topic, either
The second section included the statement of the doctrines of the blind in the matter, and then the evidence of each doctrine and discussed.
We followed it with the most correct opinion statement and concluded the research with some of the conclusions we reached through
search.
Let R be a commutative ring with identity, and M be unital (left) R-module. In this paper we introduce and study the concept of small semiprime submodules as a generalization of semiprime submodules. We investigate some basis properties of small semiprime submodules and give some characterizations of them, especially for (finitely generated faithful) multiplication modules.
المتغير العشوائي X له توزيع أسي اذا كان له دالة احتمالية الكثافة بالشكل:
عندما ، هذه هي الحالة الخاصة لتوزيع كاما.
غالباً جداً ولسبب معقول تأخذ . الحالة الخاصة لـ (1) التي نحصل عليها تسمى بالتوزيع الاسي لمعلمة واحدة.
اذا كانت ، ، التوزيع في هذه الحالة يسمى التوزيع الاسي القياسي
اما بالنسب
... Show MoreLet R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes
The aim of this paper is to introduces and study the concept of CSO-compact space via the notation of simply-open sets as well as to investigate their relationship to some well known classes of topological spaces and give some of his properties.
In this paper we study the notion of preradical on some subcategories of the category of semimodules and homomorphisms of semimodules.
Since some of the known preradicals on modules fail to satisfy the conditions of preradicals, if the category of modules was extended to semimodules, it is necessary to investigate some subcategories of semimodules, like the category of subtractive semimodules with homomorphisms and the category of subtractive semimodules with ҽҟ-regular homomorphisms.
In this paper mildly-regular topological space was introduced via the concept of mildly g-open sets. Many properties of mildly - regular space are investigated and the interactions between mildly-regular space and certain types of topological spaces are considered. Also the concept of strong mildly-regular space was introduced and a main theorem on this space was proved.
Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that