A non-zero submodule N of M is called essential if N L for each non-zero submodule L of M. And a non-zero submodule K of M is called semi-essential if K P for each non-zero prime submodule P of M. In this paper we investigate a class of submodules that lies between essential submodules and semi-essential submodules, we call these class of submodules weak essential submodules.
Let be a commutative ring with identity, and a fixed ideal of and be an unitary -module. In this paper we introduce and study the concept of -nearly prime submodules as genrealizations of nearly prime and we investigate some properties of this class of submodules. Also, some characterizations of -nearly prime submodules will be given.
In this article, unless otherwise established, all rings are commutative with identity and all modules are unitary left R-module. We offer this concept of WN-prime as new generalization of weakly prime submodules. Some basic properties of weakly nearly prime submodules are given. Many characterizations, examples of this concept are stablished.
Let be a right module over a ring with identity. The semisecond submodules are studied in this paper. A nonzero submodule of is called semisecond if for each . More information and characterizations about this concept is provided in our work.
In this paper, we introduce and study the concept of S-coprime submodules, where a proper submodule N of an R-module M is called S-coprime submodule if M N is S-coprime Rmodule. Many properties about this concept are investigated.
Let R be a commutative ring with identity and M be an unitary R-module. Let ï¤(M) be the set of all submodules of M, and ï¹: ï¤(M)  ï¤(M)  {ï¦} be a function. We say that a proper submodule P of M is ï¹-prime if for each r  R and x  M, if rx  P, then either x  P + ï¹(P) or r M ïƒ P + ï¹(P) . Some of the properties of this concept will be investigated. Some characterizations of ï¹-prime submodules will be given, and we show that under some assumptions prime submodules and ï¹-prime submodules are coincide.
Let be a commutative ring with identity, and be a unitary left -module. In this paper we introduce the concept pseudo weakly closed submodule as a generalization of -closed submodules, where a submodule of an -module is called a pseudo weakly closed submodule, if for all , there exists a -closed submodule of with is a submodule of such that . Several basic properties, examples and results of pseudo weakly closed submodules are given. Furthermore the behavior of pseudo weakly closed submodules in class of multiplication modules are studied. On the other hand modules with chain conditions on pseudo weakly closed submodules are established. Also, the relationships of pseudo weakly closed
... Show MoreLet be a commutative ring with identity , and be a unitary (left) R-module. A proper submodule of is said to be quasi- small prime submodule , if whenever with and , then either or . In this paper ,we give a comprehensive study of quasi- small prime submodules.
In''this"article, we"study",the"concept""of WN"-"2"-''Absorbing'''submodules and WNS''-''2''-''Absorbing"submodules as generalization of "weakly 2-absorbing and weakly semi 2-absorbing submodules respectively. We investigate some of basic properties, examples and characterizations of them. Also, prove, the class of WN-2-Absorbing "submodules is contained in the class of WNS-2-Absorbing "submodules. Moreover, many interesting results about these concepts, were proven.