In this paper we show that if ? Xi is monotonically T2-space then each Xi is monotonically T2-space, too. Moreover, we show that if ? Xi is monotonically normal space then each Xi is monotonically normal space, too. Among these results we give a new proof to show that the monotonically T2-space property and monotonically normal space property are hereditary property and topologically property and give an example of T2-space but not monotonically T2-space.
The living urban space is considered one of the most important elements of the success of modern cities, and it is the first mental image that is formed by people (residents and visitors) of the city , a measure of the frequency, presence and interaction of people in the spaces is an indication of the city's vitality, well-being and economic strength .
The occupation of the city of Mosul before the terrorist ISIS in 2014 and the subsequent liberation operations and the end of the war in 2017 had a great impact on the destruction of the old city on the right side and the death of its urban spaces due to the abandonment of people to it, especially the area (Al-Midan and Al-Qalayaat),
... Show MoreIn this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near compact and fibrewise locally near compact spaces, which are generalizations of well-known concepts near compact and locally near compact topological spaces. Moreover, we study relationships between fibrewise near compact (resp., fibrewise locally near compact) spaces and some fibrewise near separation axioms.
In this paper we define and study new concepts of fibrwise totally topological spaces over B namely fibrewise totally compact and fibrwise locally totally compact spaces, which are generalization of well known concepts totally compact and locally totally compact topological spaces. Moreover, we study relationships between fibrewise totally compact (resp, fibrwise locally totally compact) spaces and some fibrewise totally separation axioms.
Abstract. Fibrewise micro-topological spaces be a useful tool in various branches of mathematics. These mathematical objects are constructed by assigning a micro-topology to each fibre from a fibre bundle. The fibrewise micro-topological space is then formed by taking the direct limit of these individual micro-topological spaces. It can be adapted to analyze various mathematical structures, from algebraic geometry to differential equations. In this study, we delve into the generalizations of fibrewise micro-topological spaces and explore the applications of these abstract structures in different branches of mathematics. This study aims to define the fibrewise micro topological space through the generalizations that we use in this paper, whi
... Show MoreIn this study, we present a new steganography method depend on quantizing the perceptual color spaces bands. Four perceptual color spaces are used to test the new method which is HSL, HSV, Lab and Luv, where different algorithms to calculate the last two-color spaces are used. The results reveal the validity of this method as a steganoic method and analysis for the effects of quantization and stegano process on the quality of the cover image and the quality of the perceptual color spaces bands are presented.
studied, and its important properties and relationship with both closed and open Nano sets were investigated. The new Nano sets were linked to the concept of Nano ideal, the development of nano ideal mildly closed set and it has been studied its properties. In addition to the applied aspect of the research, a sample was taken from patients infected with viral hepatitis, and by examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous examining the infected people and using closed and open (nano mildly. and nano ideal mildly) sets, the important symptoms that constitute the core of this dangerous disease.
The basic concepts of some near open subgraphs, near rough, near exact and near fuzzy graphs are introduced and sufficiently illustrated. The Gm-closure space induced by closure operators is used to generalize the basic rough graph concepts. We introduce the near exactness and near roughness by applying the near concepts to make more accuracy for definability of graphs. We give a new definition for a membership function to find near interior, near boundary and near exterior vertices. Moreover, proved results, examples and counter examples are provided. The Gm-closure structure which suggested in this paper opens up the way for applying rich amount of topological facts and methods in the process of granular computing.
The aim of this paper is to introduce the concept of N and Nβ -closed sets in terms of neutrosophic topological spaces. Some of its properties are also discussed.
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators