Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
Disease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreBackground: Congenital cardiac defects have a wide spectrum of severity in infants. About 30-40% of patients with congenital cardiac defects will be symptomatic in the 1st year of life, while the diagnosis was established in 60% of patients by the 1st month of age.
Objectives: To identify the occurrence of specific types of CHD among hospitalized patients and to evaluate of growth of patients by different congenital heart lesions.
Methods: A retrospective study, done on ninety-six patients (51 male and 45 female) with congenital heart disease (CHD) admitted to central teaching hospital of pediatrics, Baghdad from 1st September 2009 to 30
Background: Cystatin C is recently considered to be a good predictor of cardiovascular morbidity and mortality in patients with coronary artery disease (CAD)Objectives: Correlation between cystatin and ischemic heart disease.Methods :One hundred forty patients (140) with ischemic heart disease admitted to thin study at Baghdad teaching hospital from the period June. 2011 to Jan. 2012. Those patients was categorized into three groups.Group (A): patients with ischemic heart failure.Group (B): Patients with myocardial infarction.Group (C) patients with unstable angina.All these groups were in comparison to fifty (50) healthy controls. Fasting serum citation (C) were measured in all patients and control in addition to all other routine inves
... Show MoreTo maintain a sustained competitive position in the contemporary environment of knowledge economy, organizations as an open social systems must have an ability to learn and know how to adapt to rapid changes in a proper fashion so that organizational objectives will be achieved efficiently and effectively. A multilevel approach is adopted proposing that organizational learning suffers from the lack of interest about the strategic competitive performance of the organization. This remains implicit almost in all models of organizational learning and there is little focus on how learning organizations achieve sustainable competitive advantage . A dynamic model that captures t
... Show MoreThe present study aims at assessing the effects of chronic kidney disease (CKD) on thyroid hormone and leptin by evaluating the level of: leptin hormone along with thyroid hormone in CKD patients. The study has been conducted on 70 subjects, 50 patients with an age range between 20-50 years (25 males and 25 females) who were diagnosed to have CKD stage-5, and 20 normal controls whose ages ranged between 20-48 years (10 males and 10 females), who attended the Nephrology and Transplant Center in Medical City of Baghdad- Iraq from April 2018 to July 2018. The study showed a highly significant (P<0.01) increase in TSH level in CKD patients in comparison with controls. While T3 and T4 levels observed highly significant decrea
... Show MoreBackground: The highest concentrations of
blood glucose during the day are usually found
postprandialy. Postprandial hyperglycemia (PPH)
is likely to promote or aggravate fasting
hyperglycemia. Evidence in recent years suggests
that PPH may play an important role in functional
& structural disturbances in different body organs
particularly the cardiovascular system.
Objective: To evaluate the effect of (PPH) as a
risk factor for coronary Heart disease in Type 2
diabetic patients.
Methods: Sixty-three type2 diabetic patients
were included in this study. All have controlled
fasting blood glucose, with HbA1c correlation.
They were all followed for five months period
(from May to October 2008)
Background Cardiovascular disease (CVD) is a leading cause of death worldwide. Ischemic heart disease is a major cause of morbidity and mortality. Lack of blood supply to the brain can cause tissue death if any of the cerebral veins, carotid arteries, or vertebral arteries are blocked. An ischemic stroke describes this type of event. One of the byproducts of methionine metabolism, the demethylation of methionine, is homocysteine, an amino acid that contains sulfur. During myocardial ischemia, the plasma level of homocysteine (Hcy) increases and plays a role in many methylation processes. Hyperhomocysteinemia has only recently been recognized as a major contributor to the increased risk of cardiovascular disease (CVD) owing to its eff
... Show MoreThe designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement
... Show More