Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
The development of information systems in recent years has contributed to various methods of gathering information to evaluate IS performance. The most common approach used to collect information is called the survey system. This method, however, suffers one major drawback. The decision makers consume considerable time to transform data from survey sheets to analytical programs. As such, this paper proposes a method called ‘survey algorithm based on R programming language’ or SABR, for data transformation from the survey sheets inside R environments by treating the arrangement of data as a relational format. R and Relational data format provide excellent opportunity to manage and analyse the accumulated data. Moreover, a survey syste
... Show MoreBackground: Diabetes mellitus is a major risk factor for coronary artery disease, with a higher incidence of myocardial infarction and sudden death. Left ventricular dysfunction is difficult to diagnose and to differentiate into diastolic and systolic dysfunction on the basis of medical history, physical examination, electrocardiography (ECC) and chest radiography. Two-dimensional, M-mode, and Doppler echocardiography are excellent for diagnosing left ventricular dysfunction. M-mode echocardiography was used for diagnosing left ventricular systolic dysfunction, while Doppler echocardiography has become well accepted as a reliable, reproducible and practical noninvasive method for the diagnosis of left v
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreText Clustering consists of grouping objects of similar categories. The initial centroids influence operation of the system with the potential to become trapped in local optima. The second issue pertains to the impact of a huge number of features on the determination of optimal initial centroids. The problem of dimensionality may be reduced by feature selection. Therefore, Wind Driven Optimization (WDO) was employed as Feature Selection to reduce the unimportant words from the text. In addition, the current study has integrated a novel clustering optimization technique called the WDO (Wasp Swarm Optimization) to effectively determine the most suitable initial centroids. The result showed the new meta-heuristic which is WDO was employed as t
... Show MoreThe historical center's landscape suffers from neglect, despite their importance and broad capabilities in enhancing the cultural value of the historical center, as landscape includes many heterogeneous human and non-human components, material and immaterial, natural and manufactured, also different historical layers, ancient, modern and contemporary. Due to the difference in these components and layers, it has become difficult for the designer to deal with it. Therefore, the research was directed by following a methodology of actor-network theory as it deals with such a complex system and concerned with an advanced method to connect the various components of considering landscape as a ground that can include various elements and deal wi
... Show MoreAn excellent reputation earned by initiating and practicing sustainable business practices has additional benefits, of which are reducing environmental incidents and an improvement in operational efficiency as this has the potential to help firms improve on productivity and bring down operating costs. Taken further, with ever-increasing socially and environmentally-conscious investors and the public alike, this act of natural resources management could have a significant implication on market value and income of the practicing firms.
The above proposition has been supported by sustainable business practices literature that is continuously conversing and deliberating upon the impact of efficient resource d
... Show MoreThe designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement
... Show MoreBackground: Cardiovascular complications represent one of the consequences of chronic autoimmune diseases such as Systemic Lupus Erythematosus (SLE), which has significant rates of morbidity and mortality. Dyslipidemia can be brought on by steroid medications, which are frequently given to SLE patients and are considered to be one of the major risk factors for cardiovascular diseases.
Objectives: This study attempted to investigate a potential association between circulating vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) as risk factors for atherosclerosis and their relationship to cardiovascular risk.
Patients and methods: A total
... Show More