Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreCredit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering res
... Show MoreIn the petroleum industry, multiphase flow dynamics within the tubing string have gained significant attention due to associated challenges. Accurately predicting pressure drops and wellbore pressures is crucial for the effective modeling of vertical lift performance (VLP). This study focuses on predicting the multiphase flow behavior in four wells located in the Faihaa oil field in southern Iraq, utilizing PIPESIM software. The process of selecting the most appropriate multiphase correlation was performed by utilizing production test data to construct a comprehensive survey data catalog. Subsequently, the results were compared with the correlations available within the PIPESIM software. The outcomes reveal that the Hagedorn and Brown (H
... Show MoreThe current study primarily aims to develop a dictionary system for tracing mobile phone numbers for call centers of mobile communication companies. This system tries to save the numbers using a digital search tree in order to make the processes of searching and retrieving customers’ information easier and faster. Several shrubs that represent digits of the total phone numbers will be built through following the phone number digits to be added to the dictionary, with the owner name being at the last node in the tree. Thus, by such searching process, every phone number can be tracked digit-by-digit according to a required path inside its tree, until reaching the leaf. Then, the value stored in the node, that rep
... Show MoreThe steganography (text in image hiding) methods still considered important issues to the researchers at the present time. The steganography methods were varied in its hiding styles from a simple to complex techniques that are resistant to potential attacks. In current research the attack on the host's secret text problem didn’t considered, but an improved text hiding within the image have highly confidential was proposed and implemented companied with a strong password method, so as to ensure no change will be made in the pixel values of the host image after text hiding. The phrase “highly confidential” denoted to the low suspicious it has been performed may be found in the covered image. The Experimental results show that the covere
... Show MoreDeveloping a solid e-voting system that offers fairness and privacy for users is a challenging objective. This paper is trying to address whether blockchain can be used to build an efficient e-voting system, also, this research has specified four blockchain technologies with their features and limitations. Many papers have been reviewed in a study covered ten years from 2011 to 2020. As a result of the study, the blockchain platform can be a successful public ledger to implement an e-voting system. Four blockchain technologies have been noticed from this study. These are blockchain using smart contracts, blockchain relying on Zcash platform, blockchain programmed from scratch, and blockchain depending on digital signature. Each bl
... Show MoreIn this paper, we attempt to predict the depositional environments with associated lithofacies of the main reservoir of the late Cretaceous Mishrif carbonate Formation, depending on the analysis of the created seismic isopach map by integrating seismic and well data. The isopach map was created from a 3D-seismic reflection survey carried out at the Dujaila oil field in southeastern Iraq, which is of an area of 602.26 Km2, and integrated with the data of the two explored wells. Based on the interpretation of the seismic isopach map, the diagram of the 3D-depositional environment model of Mishrif Formation was constructed. It showed three distinguished depositional environments, which were graduated from a back reef lithofacies of a shallo
... Show MoreTourism plays an important role in Malaysia’s economic development as it can boost business opportunity in its surrounding economic. By apply data mining on tourism data for predicting the area of business opportunity is a good choice. Data mining is the process that takes data as input and produces outputs knowledge. Due to the population of travelling in Asia country has increased in these few years. Many entrepreneurs start their owns business but there are some problems such as wrongly invest in the business fields and bad services quality which affected their business income. The objective of this paper is to use data mining technology to meet the business needs and customer needs of tourism enterprises and find the most effective
... Show More