Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
In this paper, a harvested prey-predator model involving infectious disease in prey is considered. The existence, uniqueness and boundedness of the solution are discussed. The stability analysis of all possible equilibrium points are carried out. The persistence conditions of the system are established. The behavior of the system is simulated and bifurcation diagrams are obtained for different parameters. The results show that the existence of disease and harvesting can give rise to multiple attractors, including chaos, with variations in critical parameters.
Sentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreThe study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers
... Show MoreThe present theoretical study analyzes the legacy of the Chicago School of Urban Sociology and evaluates it in the light of the growth and development of Chicago City and the establishment of sociology in it. Sociology has become an academic discipline recognized in the United States of America in the late nineteenth century, particularly, after the establishment of the first department of sociology in the University of Chicago in 1892. That was during the period of the rapid industrialization and sustainable growth of the Chicago City. The Chicago School relied on Chicago City in particular, as one of the American cities that grew and expanded rapidly in the first two decades of the twentieth century. At the end of the nineteenth centur
... Show Moreالخلاصة: الحكة اليوريمية لدى مرضى غسيل الكلى يؤثر على أكثر من 40٪ من المرضى. وربما ترتبط الحكة المستمرة بمستويات عالية من الإنترلوكين 31. الاهداف: النظر إلى مستويات مصل إنترلوكين 31 لدى مرضى غسيل الكلى المصابين بمرض الكلى في المرحلة النهائية، سواء مع أو بدون حكة يوريمية. النتائج: لم يكن مستوى المصل [الوسيط (] لـ IL-31 في المرضى الذين يعانون من الحكة اليوريميةأو بدون حكة في عينة مصل ما قبل غسيل الكلى مختلفًا بشكل م
... Show MoreThe purpose of this research highlight the achievement of the effectiveness of small and medium enterprises dimensions and conformable to analyze the relationship between business strategies and human resources management strategies , and launched search of a dilemma thought provoking fundamental questions revolve around the search is the lack of appropriate strategies in these enterprises to help them continuity and permanence in business and markets , as these enterprises lack the human resources management strategies appropriate , as well as business strategies that make them withstand the changes in the market environment is changing and volatile . It was to
... Show MoreThere are many researches deals with constructing an efficient solutions for real problem having Multi - objective confronted with each others. In this paper we construct a decision for Multi – objectives based on building a mathematical model formulating a unique objective function by combining the confronted objectives functions. Also we are presented some theories concerning this problem. Areal application problem has been presented to show the efficiency of the performance of our model and the method. Finally we obtained some results by randomly generating some problems.