Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
Background: Ejection fraction have been used frequently
for assessment of the left ventricular function, but can be
associated with errors in which myocardial performance
index have been used as another parameter to measure the
left ventricular function.
Objective: selecting another echocardiography parameter
for the assessment of myocardial in function instead of the
ejection fraction.
Methods: 160 patients referred to the echocardiogram unit
from the period december 2007 to august 2008 requesting
assessment of left ventricular function. After clinical
examination, routine blood tests; chest x-ray and
electrocardiographic recording have been completed. All
patients informed to come for this unit af
This included the study of embryonic development of the heart in different lengths of embryos of Sailfin molly (Poecelia latipinna) fish, which is one of the invasive fish species in Iraq and is spread acrosswater bodies, especially in the marshes that are located in the south of Iraq. The fish samples were collected from the AGhazl market in Baghdad province, and dissected to remove the ovary that containing embryos at different lengths using fine forceps. All the samples were fixed using formalin after making a hole in the gas sac, especially in advanced embryos stage. In a 3 mm embryo, the heart was completely formed and the blood vessels and optic cup were clear, while the lens of the eye was beginning to form. In 4-5 mm embryo, it was
... Show MoreThis text and guide discusses the surgical and medical management of congenital heart diseases in both adult and children. It describes the disease, pathology, treatment, complications and follow-up with extensive use of didactic material to educate the reader to the practicalities of the subject. It details the novel research via an extensive literature review, while covering all aspects of the surgical and medical treatment of congenital heart disease. It includes review of the laparoscopic techniques and epidemiology of each disease involved and their prevalence to provide the reader with the full clinical picture. Clinical and Surgical Aspects of Congenital Heart Diseases: Text and Study Guide provides a thorough practical reference fo
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show MoreThe aim of this work is to provide an efficient selection technique as a part of planning process to guide the decision makers to decide the preferences of one supplier over another for purchasing lab instruments in education domain. Fuzzy Analytical Hierarchy Process has used as a multi-criteria decision process, as an industrial engineering tool with certain emphasis on the qualitative aspects required to the decision makers. While the concept of degree of possibility for each criterion is used to reach its relative weights, a specific methodology created to reach the final objective decision of supplier selection. A questionnaire form was developed and distributed to five universities located in Baghdad province with a total
... Show MoreThis paper presents the design of a longitudinal controller for an autonomous unmanned aerial vehicle (UAV). This paper proposed the dual loop (inner-outer loop) control based on the intelligent algorithm. The inner feedback loop controller is a Linear Quadratic Regulator (LQR) to provide robust (adaptive) stability. In contrast, the outer loop controller is based on Fuzzy-PID (Proportional, Integral, and Derivative) algorithm to provide reference signal tracking. The proposed dual controller is to control the position (altitude) and velocity (airspeed) of an aircraft. An adaptive Unscented Kalman Filter (AUKF) is employed to track the reference signal and is decreased the Gaussian noise. The mathematical model of aircraft
... Show MoreThe economy is exceptionally reliant on agricultural productivity. Therefore, in domain of agriculture, plant infection discovery is a vital job because it gives promising advance towards the development of agricultural production. In this work, a framework for potato diseases classification based on feed foreword neural network is proposed. The objective of this work is presenting a system that can detect and classify four kinds of potato tubers diseases; black dot, common scab, potato virus Y and early blight based on their images. The presented PDCNN framework comprises three levels: the pre-processing is first level, which is based on K-means clustering algorithm to detect the infected area from potato image. The s
... Show MoreBlockchain is an innovative technology that has gained interest in all sectors in the era of digital transformation where it manages transactions and saves them in a database. With the increasing financial transactions and the rapidly developed society with growing businesses many people looking for the dream of a better financially independent life, stray from large corporations and organizations to form startups and small businesses. Recently, the increasing demand for employees or institutes to prepare and manage contracts, papers, and the verifications process, in addition to human mistakes led to the emergence of a smart contract. The smart contract has been developed to save time and provide more confidence while dealing, as well a
... Show MoreThe security of message information has drawn more attention nowadays, so; cryptography has been used extensively. This research aims to generate secured cipher keys from retina information to increase the level of security. The proposed technique utilizes cryptography based on retina information. The main contribution is the original procedure used to generate three types of keys in one system from the retina vessel's end position and improve the technique of three systems, each with one key. The distances between the center of the diagonals of the retina image and the retina vessel's end (diagonal center-end (DCE)) represent the first key. The distances between the center of the radius of the retina and the retina vessel's end (ra
... Show MoreThe purchase of a home and access to housing is one of the most important requirements for the life of the individual and the stability of living and the development of the prices of houses in general and in Baghdad in particular affected by several factors, including the basic area of the house, the age of the house, the neighborhood in which the housing is available and the basic services, Where the statistical model SSM model was used to model house prices over a period of time from 2000 to 2018 and forecast until 2025 The research is concerned with enhancing the importance of this model and describing it as a standard and important compared to the models used in the analysis of time series after obtaining the
... Show More