Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
The reason for conducting this study is to prolong release of miconazole in the ocular site of action by ocular-based gels (OBGs) formulations. The formulation factors affecting on the release from OBG should be studied using various gelling agents in various concentrations to achieve the improvement in retention and residence time in response to prolonged release. In this study, the formulations were prepared using carbopol 940, pectin, sodium alginate, poloxamer 407, and poly(methacrylic acid) at 0.5%, 1%, and 1.5% w/v, respectively. Hydroxypropyl methylcellulose E5 (HPMC E5) 1% was added as thickening agent/viscosity builder. The formulation containing carbopol 940, pectin and sodium alginate at 1.5% w/v, displayed a noticable im
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreGH and IGF-2 were examined histologically in the present study on adult hens to learn more about the organs’ responses to GH and IGF-2. Cardiac protein synthesis is stimulated by GH and IGF-2, according to microscopic examination. The recent research found a considerable amount of adipose tissue in the cardiac muscle bundles, which is linked to the metabolic process. In addition, GH and IGF-2 were shown to promote protein synthesis and mitosis in liver and gizzard tissues, according to the research. In addition, the apoptosis, regeneration, and secretory activity of gizzard glands are increased by the aforementioned hormones.
This study aimed to evaluate the preparedness and adherence of community pharmacists to the International Pharmaceutical Federation (FIP) Health Advisory COVID-19 guidelines for pharmacists (July 2020) during COVID-19 pandemic. This was a cross-sectional study based on electronic survey using google form, which was distributed from November 19, 2020 to January 1, 2021 using social media platforms. The survey measured 21 pharmacy preventive measures (PM). A multivariate regression analysis was used to identify factors influencing pharmacy implementing of PM. Hand disinfection after serving patients represented the main adopted measure (89.3%). Surprisingly, only 35.4% of participants implemented the proper ways of hand disinfection during fa
... Show MoreAbstractBackground:Reduced glomeular filtration rate isassociated with increasedmorbidity in patientswith coronary arterydisease.Objectives :To analyze the declining eGFR andmortality risks in a patients with Chronic KidneyDisease and have had Coronary Artery Diseaseincluding risk factors .Patientsand Methods:The study included (160)patientsbetween the ages of 16 and 87years.Glomerular filtration rate was estimated (eGFR)using the Modification of Diet in Renal Diseaseequationand was categorized in the ranges<60 mL· min−1 per 1.73 m2and≥ 60 ml/min/1.73 m2.Baseline risk factors were analyzed by category ofeGFR,.The studied patients in emergencydepartment, were investigatedusing Coxproportional hazard models adjusting for traditiona
... Show MoreThis paper presents the design of a longitudinal controller for an autonomous unmanned aerial vehicle (UAV). This paper proposed the dual loop (inner-outer loop) control based on the intelligent algorithm. The inner feedback loop controller is a Linear Quadratic Regulator (LQR) to provide robust (adaptive) stability. In contrast, the outer loop controller is based on Fuzzy-PID (Proportional, Integral, and Derivative) algorithm to provide reference signal tracking. The proposed dual controller is to control the position (altitude) and velocity (airspeed) of an aircraft. An adaptive Unscented Kalman Filter (AUKF) is employed to track the reference signal and is decreased the Gaussian noise. The mathematical model of aircraft
... Show More
Cutting forces are important factors for determining machine serviceability and product quality. Factors such as speed feed, depth of cut and tool noise radius affect on surface roughness and cutting forces in turning operation. The artificial neural network model was used to predict cutting forces with related to inputs including cutting speed (m/min), feed rate (mm/rev), depth of cut (mm) and work piece hardness (Map). The outputs of the ANN model are the machined cutting force parameters, the neural network showed that all (outputs) of all components of the processing force cutting force FT (N), feed force FA (N) and radial force FR (N) perfect accordance with the experimental data. Twenty-five samp
... Show More