Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
The influence of sensing element length of no-core fiber strain sensor has been studied and experimentally demonstrated, four different lengths of 125 μm diameter no-core fiber is fused between two standard single-mode fibers and bi-directionally strained, the highest obtained sensitivity was around 16.37 pm με -1 which was exhibited in the shortest no-core fiber segment, to the best of our knowledge this is the first study of the influence of no-core fiber strain sensors length on sensor sensitivity. The proposed sensor can be used in many opto-mechanical applications such as, structural health monitoring, aerospace vehicles and airplane components monitoring.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreThe present research deals with the influencing factors which depends on the way perceptual of the graphic designer which enters in the design logos of the loco European health, where the search include four chapters, the researcher reviewed in the chapter 0ne the methodical frame of the research ,as reviewed in the second chapter the theoretical frame, and the previous studies which included three sections, the first section included the perceptual understandable and types of it, and the second section included the influencing factors in the designer perceptual ways and its division . While the third section included the perceptual in graphic designer through the percepted shapes and the relation with ground and colors for express the i
... Show MoreBackground/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreAbstract: Two different shapes of offset optical fiber was studied based on coreless fiber for refractive index (RI)/concentration (con.) measurement, and compare them. These shapes are U and S-shapes, both shapes structures were formed by one segment of coreless fiber (CF) was joined between two single mode (SMF) lead in /lead out with the same displacement (12.268µm) at both sides, the results shows the high sensitive was achieved in a novel S-shape equal 98.768nm/RIU, to our knowledge, no one has ever mentioned or experienced it, it’s the best shape rather than the U-shape which equal 85.628nm/RIU. In this research, it was proved that the offset form has a significant effect on the sensitivity of the sensor. Addi
... Show MoreThe Internet of Things (IoT) is an expanding domain that can revolutionize different industries. Nevertheless, security is among the multiple challenges that it encounters. A major threat in the IoT environment is spoofing attacks, a type of cyber threat in which malicious actors masquerade as legitimate entities. This research aims to develop an effective technique for detecting spoofing attacks for IoT security by utilizing feature-importance methods. The suggested methodology involves three stages: preprocessing, selection of important features, and classification. The feature importance determines the most significant characteristics that play a role in detecting spoofing attacks. This is achieved via two techniques: decision tr
... Show MoreThe research aims to identify the factors affecting the customer and their impact desire for market share in a competitive market National Insurance Company, where he was after the tremendous developments that have taken place in the insurance sector, crowded markets, private companies and the intensified competition among those companies on one side and public sector companies, including national insurance company on the other hand, increased attention and study in a big way the customer and the factors influencing the desire. As the national insurance company ascertains its targets once the sale of insurance documents only, but by knowing the tendencies and aspirations of current and prospective customers a way that helps to strengthen
... Show MoreObjective The aim of this study was to assess whether serum cytokine levels correlate with clinical periodontal parameters in health or disease.
Materials and Methods Male subjects (40–60 years) with CP (n = 30), CP + CHD (n = 30), and healthy controls (n = 20) had plaque index (PLI), gingival index (GI), bleeding on probing, probing pocket depth (PPD), and clinical attachment level (CAL) evaluated. Serum IL-1β and IL-6 levels were quantified using enzyme-linked immunosorbent assay.
Results PLI, GI, PPD, and CAL were significantly higher in patients with CP + CHD compared to those with CP. Serum levels of IL-1β and IL-6 were also si
The current research discusses "The Relationship critical factors for knowledge transfer in strategic success opportunities", the attention have been increased on knowledge transfer and strategic success subjects because on being one of the important and contemporary issues, which have a significant impact on the existence of organizations and its future. The research aims to identify the critical factors for knowledge transfer in private high education environment which enables (the college community surveyed) to achieve strategic success, also the research sought to answer questions related to research problem by testing a number of major and minor hypothes in correlation, in order to test the hypotheses I us
... Show MoreIn this paper all possible regressions procedure as well as stepwise regression procedure were applied to select the best regression equation that explain the effect of human capital represented by different levels of human cadres on the productivity of the processing industries sector in Iraq by employing the data of a time series consisting of 21 years period. The statistical program SPSS was used to perform the required calculations.