Heart disease is a significant and impactful health condition that ranks as the leading cause of death in many countries. In order to aid physicians in diagnosing cardiovascular diseases, clinical datasets are available for reference. However, with the rise of big data and medical datasets, it has become increasingly challenging for medical practitioners to accurately predict heart disease due to the abundance of unrelated and redundant features that hinder computational complexity and accuracy. As such, this study aims to identify the most discriminative features within high-dimensional datasets while minimizing complexity and improving accuracy through an Extra Tree feature selection based technique. The work study assesses the efficacy of several classification algorithms on four reputable datasets, using both the full features set and the reduced features subset selected through the proposed method. The results show that the feature selection technique achieves outstanding classification accuracy, precision, and recall, with an impressive 97% accuracy when used with the Extra Tree classifier algorithm. The research reveals the promising potential of the feature selection method for improving classifier accuracy by focusing on the most informative features and simultaneously decreasing computational burden.
The objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show MoreThis paper aims to explain the effect of the taxes policy including direct & indirect taxes on supporting the domestic Investment in Iraq. This could help the official planners for drawing the future policies that help provoking (istumlating) the domestic investment in Iraq the quantitative analysis approach was adopted using regression model. The results showed the significance of the effects of both direct & indirect taxes policies on domestic as a simple correlation coefficient ( r ) of ( 0.6 ) , ( 0.64 ) respectively.
Coronary heart disease (CHD) is the leading cause of death in United State (U.S.). Controlling of modifiable risk factors such as smoking, hypertension (HT), diabetes mellitus (D.M.), dyslipidemia, physical inactivity & obesity will prevent other serious cardiovascular complications
Abstract
The study which carried( The important political development in
democracy Congo).initially deals with The important political events in African
country democracy Congo which know tow political period , and this study
divided tow chapter to expend these periods , the first chapter subject was the
period of mobotow 1965- 1997 . while the second chapter subject was abo
democracy Congo under the rule of loran cabeela who's comes to the rules of
the African country after he lead military movement agents' mobotow .
but the study have aconcluded that the political development in
democracy Congo happened because of the foreigner role , this role keep the
authority of mobotow and in the end let him down
Background: Congenital heart disease is one of the most common developmental anomalies in children. These patients commonly have poor oral health that increase caries risk. Dental management of children with congenital heart disease requires special attention, because of their heightened susceptibility to infectious endocarditis. The aims of this study were to assess the severity of dental caries of primary and permanent teeth and treatment needs in relation to nutritional indicator (Body Mass Index) among children with congenital heart disease. Materials and Methods: In this case-control study, case group consisted of 399 patients aged between 6-12 years old with congenital heart disease were examined for dental status in Ibn Al-Bitar spec
... Show MoreThe objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreThe researchers have a special interest in studying Markov chains as one of the probability samples which has many applications in different fields. This study comes to deal with the changes issue that happen on budget expenditures by using statistical methods, and Markov chains is the best expression about that as they are regarded reliable samples in the prediction process. A transitional matrix is built for three expenditure cases (increase ,decrease ,stability) for one of budget expenditure items (base salary) for three directorates (Baghdad ,Nineveh , Diyala) of one of the ministries. Results are analyzed by applying Maximum likelihood estimation and Ordinary least squares methods resulting
... Show MoreChurning of employees from organizations is a serious problem. Turnover or churn of employees within an organization needs to be solved since it has negative impact on the organization. Manual detection of employee churn is quite difficult, so machine learning (ML) algorithms have been frequently used for employee churn detection as well as employee categorization according to turnover. Using Machine learning, only one study looks into the categorization of employees up to date. A novel multi-criterion decision-making approach (MCDM) coupled with DE-PARETO principle has been proposed to categorize employees. This is referred to as SNEC scheme. An AHP-TOPSIS DE-PARETO PRINCIPLE model (AHPTOPDE) has been designed that uses 2-stage MCDM s
... Show MoreThis paper deals with the most important factors leading to child marriage and the importance of the study shed light on the factors leading to the marriage of minors than to underage marriage of repercussions on society and on the individual and household level, and thus its effects on the development of Almrah Battabarha half of society Vsba minors hinders progress Almrah and deprive of her childhood and deprive them of education leading to the spread of illiteracy , in addition to the marriage of minors having psychological risks, health and social girl and the family together.
The objectives of the study focused on identifying the socio and cultural factors leading to the marriage of minors, and highlights the marriage Alqaasratal
Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of
... Show More