Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Oriented Gradients) is utilized to extract from the images. In addition, the Binarized Genetic Algorithm (BGA) is utilized as a features selection in order to select the most effective features of HOG. Random Forest (RF) functions as a classifier to categories facial emotions in people according to the image samples. The facial human examples of photos that have been extracted from the Yale Face dataset, where it contains the eleven human facial expressions are as follows; normal, left light, no glasses, joyful, centre light, sad, sleepy, wink and surprised. The proposed system performance is evaluated relates to accuracy, sensitivity (i.e., recall), precision, F-measure (i.e., F1-score), and G-mean. The highest accuracy for the proposed BGA-RF method is up to 96.03%. Besides, the proposed BGA-RF has performed more accurately than its counterparts. In light of the experimental findings, the suggested BGA-RF technique has proved its effectiveness in the human facial emotions identification utilizing images.
Twelve species from Brassicaceae family were studied using two different molecular techniques: RAPD and ISSR; both of these techniques were used to detect some molecular markers associated with the genotype identification. RAPD results, from using five random primers, revealed 241 amplified fragments, 62 of them were polymorphic (26%).
ISSR results showed that out of seven primers, three (ISSR3, UBC807, UBC811) could not amplify the genomic DNA; other primers revealed 183 amplified fragments, 36 of them were polymorphic (20%). The similarity evidence and dendrogram for the genetic distances of the incorporation between the two techniques showed that the highest similarity was 0.897 between the va
... Show MoreAbstract
The research seeks to shed light on green accounting information systems, analyze them, identify sustainability reporting and how to improve it, as well as study the importance of the Iraqi oil sector, analyze it, and work on applying green accounting information systems in order to improve the quality of sustainability reporting. Oil as a branch of the General Corporation for the Distribution of Oil and Gas Products to apply the practical aspect and prove the hypothesis of the research. Explaining the company's role in improving environmental conditions
The degree of the woman’s satisfaction on clothing depends, to a large extent, on the body measurements. If clothing is very wide, it shows her enormous and if it is too tight it may draw attention to the defects of the body. It may also lead to the compatibility or incompatibility of clothing with fashion. Whatever the quality of the garment in terms of sewing and design, the costume which is not suitable for body size may affect the physical style negatively and may give the wearer an improper look. Clothing was carried out without measurements and did not use models (templates). The method of preparation affected the overall appearance because it often did not fit the shape of the body completely. Therefore, people thought in many w
... Show MoreAbstract
The problem of missing data represents a major obstacle before researchers in the process of data analysis in different fields since , this problem is a recurrent one in all fields of study including social , medical , astronomical and clinical experiments .
The presence of such a problem within the data to be studied may influence negatively on the analysis and it may lead to misleading conclusions , together with the fact that these conclusions that result from a great bias caused by that problem in spite of the efficiency of wavelet methods but they are also affected by the missing of data , in addition to the impact of the problem of miss of accuracy estimation
... Show MoreAbstract
The changes that happened in the environment of business have great effects upon organizations with different activities specially the banks which requires the existence of an able opinion resources can adapt with the changes . Accordingly importance put upon intellectual capital which become one of the basic resources for organizations and one of success and growth elements with the availability of expertise , skills and capability of making essential changes in different process due to the presentation of innovations and creations of the to support banks activities .Therefore the intellectual capital represents the more r
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used.
Experimental results shows LPG-
... Show MoreThis paper includes a comparison between denoising techniques by using statistical approach, principal component analysis with local pixel grouping (PCA-LPG), this procedure is iterated second time to further improve the denoising performance, and other enhancement filters were used. Like adaptive Wiener low pass-filter to a grayscale image that has been degraded by constant power additive noise, based on statistics estimated from a local neighborhood of each pixel. Performs Median filter of the input noisy image, each output pixel contains the Median value in the M-by-N neighborhood around the corresponding pixel in the input image, Gaussian low pass-filter and Order-statistic filter also be used. Experimental results shows LPG-PCA method
... Show MoreTwo unsupervised classifiers for optimum multithreshold are presented; fast Otsu and k-means. The unparametric methods produce an efficient procedure to separate the regions (classes) by select optimum levels, either on the gray levels of image histogram (as Otsu classifier), or on the gray levels of image intensities(as k-mean classifier), which are represent threshold values of the classes. In order to compare between the experimental results of these classifiers, the computation time is recorded and the needed iterations for k-means classifier to converge with optimum classes centers. The variation in the recorded computation time for k-means classifier is discussed.
Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology
... Show More