Most recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Oriented Gradients) is utilized to extract from the images. In addition, the Binarized Genetic Algorithm (BGA) is utilized as a features selection in order to select the most effective features of HOG. Random Forest (RF) functions as a classifier to categories facial emotions in people according to the image samples. The facial human examples of photos that have been extracted from the Yale Face dataset, where it contains the eleven human facial expressions are as follows; normal, left light, no glasses, joyful, centre light, sad, sleepy, wink and surprised. The proposed system performance is evaluated relates to accuracy, sensitivity (i.e., recall), precision, F-measure (i.e., F1-score), and G-mean. The highest accuracy for the proposed BGA-RF method is up to 96.03%. Besides, the proposed BGA-RF has performed more accurately than its counterparts. In light of the experimental findings, the suggested BGA-RF technique has proved its effectiveness in the human facial emotions identification utilizing images.
Abstract: Word sense disambiguation (WSD) is a significant field in computational linguistics as it is indispensable for many language understanding applications. Automatic processing of documents is made difficult because of the fact that many of the terms it contain ambiguous. Word Sense Disambiguation (WSD) systems try to solve these ambiguities and find the correct meaning. Genetic algorithms can be active to resolve this problem since they have been effectively applied for many optimization problems. In this paper, genetic algorithms proposed to solve the word sense disambiguation problem that can automatically select the intended meaning of a word in context without any additional resource. The proposed algorithm is evaluated on a col
... Show MoreIn this study, an analysis of re-using the JPEG lossy algorithm on the quality of satellite imagery is presented. The standard JPEG compression algorithm is adopted and applied using Irfan view program, the rang of JPEG quality that used is 50-100.Depending on the calculated satellite image quality variation, the maximum number of the re-use of the JPEG lossy algorithm adopted in this study is 50 times. The image quality degradation to the JPEG quality factor and the number of re-use of the JPEG algorithm to store the satellite image is analyzed.
International trade in services is becoming increasingly important as it is an economic activity that deals with invisible trade, which has become increasingly important in the balance of international trade. The establishment of the WTO is a starting point in international trade relations. It is responsible for all aspects of international trade, , And in view of the continued increase in international trade in services, the need for more internationally recognized rules has become more urgent, especially as it has been increasingly proven that the traditional framework of public services is inadequate to operate some of the most dynamic and innovative sectors of the economy. (GATS) to be the regulatory framework for this sector
... Show MoreThere is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that
... Show MoreFor several applications, it is very important to have an edge detection technique matching human visual contour perception and less sensitive to noise. The edge detection algorithm describes in this paper based on the results obtained by Maximum a posteriori (MAP) and Maximum Entropy (ME) deblurring algorithms. The technique makes a trade-off between sharpening and smoothing the noisy image. One of the advantages of the described algorithm is less sensitive to noise than that given by Marr and Geuen techniques that considered to be the best edge detection algorithms in terms of matching human visual contour perception.
This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti
... Show MoreVol. 6, Issue 1 (2025)