The field of autonomous robotic systems has advanced tremendously in the last few years, allowing them to perform complicated tasks in various contexts. One of the most important and useful applications of guide robots is the support of the blind. The successful implementation of this study requires a more accurate and powerful self-localization system for guide robots in indoor environments. This paper proposes a self-localization system for guide robots. To successfully implement this study, images were collected from the perspective of a robot inside a room, and a deep learning system such as a convolutional neural network (CNN) was used. An image-based self-localization guide robot image-classification system delivers a more accurate solution for indoor robot navigation. The more accurate solution of the guide robotic system opens a new window of the self-localization system and solves the more complex problem of indoor robot navigation. It makes a reliable interface between humans and robots. This study successfully demonstrated how a robot finds its initial position inside a room. A deep learning system, such as a convolutional neural network, trains the self-localization system as an image classification problem. The robot was placed inside the room to collect images using a panoramic camera. Two datasets were created from the room images based on the height above and below the chest. The above-mentioned method achieved a localization accuracy of 98.98%.
Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w
... Show MoreThis paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, Iraqi Journal of Science, 2023
Building a system to identify individuals through their speech recording can find its application in diverse areas, such as telephone shopping, voice mail and security control. However, building such systems is a tricky task because of the vast range of differences in the human voice. Thus, selecting strong features becomes very crucial for the recognition system. Therefore, a speaker recognition system based on new spin-image descriptors (SISR) is proposed in this paper. In the proposed system, circular windows (spins) are extracted from the frequency domain of the spectrogram image of the sound, and then a run length matrix is built for each spin, to work as a base for feature extraction tasks. Five different descriptors are generated fro
... Show MoreDue to the vast using of digital images and the fast evolution in computer science and especially the using of images in the social network.This lead to focus on securing these images and protect it against attackers, many techniques are proposed to achieve this goal. In this paper we proposed a new chaotic method to enhance AES (Advanced Encryption Standards) by eliminating Mix-Columns transformation to reduce time consuming and using palmprint biometric and Lorenz chaotic system to enhance authentication and security of the image, by using chaotic system that adds more sensitivity to the encryption system and authentication for the system.