The drug promethazine hydrochloride (PRZH) forms with rhodium (II) a colored chelate (?max = 472 nm) complex at (pH = 2.1) which is extractable with benzyl alcohol as organic solvent. Under the appropriate experimental conditions a calibration plot was set up from which some analytical parameter were derived and deduced by regression. Standard addition procedure was also adopted. It has been estimated that the concentration of the drug PRZH to be 24.89 mg per unit and 24.19 mg per unit for both calibrations. Under optimal conditions, the developed method has been achieved the following characteristics: LDR (30 – 150 µg ml-1 ) PRZH , RSD % ( 0.6 – 2.47 ) , sandell sensitivity( 0.0844 µg. cm -2 ) , LOD ( 1.66 µgml-1 ) , recovery % ( 100.74 ± 1.34 ) , Erel % ( 0.74 ) . Stability constant (6.4 × 10 5 M-1). The mole – ratio method (1: 1) approved that PRZH – Rh (II) as a structure of the complex. The developed procedure has been adapted to analyze PRZH in various pharmaceuticals.
A simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected optimum conditions,
... Show MoreA simple and highly sensitive cloud point extraction process was suggested for preconcentration of micrograms amount of isoxsuprine hydrochloride (ISX) in pure and pharmaceutical samples. After diazotization coupling of ISX with diazotized sulfadimidine in alkaline medium, the azo-dye product quantitatively extracted into the Triton X-114 rich phase, dissolved in ethanol and determined spectrophotometrically at 490 nm. The suggested reaction was studied with and without extraction and simple comparison between the batch and CPE methods was achieved. Analytical variables including concentrations of reagent, Triton X-114 and base, incubated temperature, and time were carefully studied. Under the selected opti
... Show MoreThe present study combines UV-Vis spectrophotometry and dispersive liquid-liquid microextraction (DLLME) for the preconcentration and determination of trace level clidinium bromide (Clid) in pharmaceutical preparation and real samples. The method is based on ion-pair formation between Clid and bromocresol green in aqueous solution using citrate buffer (pH = 3). The colored product was first extracted using a mixture of 800 µL acetonitrile and 300 µL chloroform solvents. Then, a spectrophotometric measurement of sediment phase was performed at λ = 420 nm. The important parameters affecting the efficiency of DLLME were optimized. Under the optimum conditions, the calibration graphs of standard -1 (Std.), drug, urine and serum were ranged
... Show MoreChromatographic and spectrophotometric methods for the estimation of mebendazole in
pharmaceutical products were developed. The flow injection method was based on the oxidation of
mebendazole by a known excess of sodium hypochlorite at pH=9.5. The excess sodium hypochlorite is then
reacted with chloranilic acid (CAA) to bleach out its color. The absorbance of the excess CAA was recorded
at 530 nm. The method is fast, simple, selective, and sensitive. The chromatographic method was carried out
on a Varian C18 column. The mobile phase was a mixture of acetonitrile (ACN), methanol (MeOH), water
and triethylamine (TEA), (56% ACN, 20% MeOH, 23.5% H2O, 0.5% TEA, v/v), adjusted to pH = 3.0 with
1.0 M hy
A simple analytical method was used in the present work for the simultaneous quantification of Ciprofloxacin and Isoniazid in pharmaceutical preparations. UV-Visible spectrophotometry has been applied to quantify these compounds in pure and mixture solutions using the first-order derivative method. The method depends on the first derivative spectrophotometry using zero-cross, peak to baseline, peak to peak and peak area measurements. Good linearity was shown in the concentration range of 2 to 24 μg∙mL-1 for Ciprofloxacin and 2 to 22 μg∙mL-1 for Isoniazid in the mixture, and the correlation coefficients were 0.9990 and 0.9989 respectively using peak area mode. The limits of detection (LOD) and limits of quantification (LOQ) wer
... Show MoreA simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration
... Show MoreA simple, rapid, accurate and sensitive spectrophotometric method for the determination of thiaminehydrochloride has been developed. The method is based on the formation of the Schiff’s base between the primary amino group present in thiamine hydrochloride and aldehyde group present in the vanillin reagent to produce a yellow colored complex having maximum absorption at 390 nm. Beer’s law has obeaid over the concentration range of 2-28µg/mL, with molar absorptivity of 0.96x104L/mol.cm. The average recovery which is a measure of accuracy is 100±1.3% and the relative standard deviation (RSD) is less than1.5 .The present method is considered to be
... Show MoreThis paper concerned with development of a spectrophotometric method for the determination of paracetamol, based on the diazotisation and coupling reaction with anthranilic acid in basic medium, to form an intense yellow coloured, water-soluble and stable azo-dye which shows a maximum absorption at 421nm. Beer’s law is obeyed over the concentration range of 1.0-10 µg/ml; with molar absorptivity of 2.1772×104 L.mol -1.cm-1 and Sandell’s sensitivity index 6.9446 µg.cm-2. The method has been applied successfully for the determination of paracetamol in pharmaceutical formulation.