Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of the three-dimensional dynamic expansion is established based on the common multi-modal data, for example video , sound ,text.Based on the framework, a multi-modal fusion-matched framework based on spatial and temporal feature enhancement, respectively to solve the dynamic correlation within and between modes, and then model the short and long term dynamic correlation information between different modes based on the proposed framework. Multiple group experiments performed on MOSI datasets show that the emotion recognition model constructed based on the framework proposed here in this paper can better utilize the more complex complementary information between different modal data. Compared with other multi-modal data fusion models, the spatial-temporal attention-based multimodal data fusion framework proposed in this paper significantly improves the emotion recognition rate and accuracy when applied to multi-modal emotion analysis, so it is more feasible and effective.
Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreCancer is one of the critical health concerns. Health authorities around the world have devoted great attention to cancer and cancer causing factors to achieve control against the increasing rate of cancer. Carcinogens are the most salient factors that are accused of causing a considerable rate of cancer cases. Scientists, in different fields of knowledge, keep warning people of the imminent attack of carcinogens which are surrounding people in the environment and may launch their attack at any moment. The present paper aims to investigate the linguistic construction of the imminent carcinogen attack in English and Arabic scientific discourse. Such an investigation contributes to enhancing the scientists’ awareness of the linguistic co
... Show MoreAbstract:
The main objective of the research is to build an optimal investment portfolio of stocks’ listed at the Iraqi Stock Exchange after employing the multi-objective genetic algorithm within the period of time between 1/1/2006 and 1/6/2018 in the light of closing prices (43) companies after the completion of their data and met the conditions of the inspection, as the literature review has supported the diagnosis of the knowledge gap and the identification of deficiencies in the level of experimentation was the current direction of research was to reflect the aspects of the unseen and untreated by other researchers in particular, the missing data and non-reversed pieces the reality of trading at the level of compani
... Show MoreThe research aims to shed light on the importance of forensic accounting and its role in winning compensation claims against the company because of the ability of the forensic accountant (the judicial expert) to interpret and analyze the data. The research community represents the insurance companies in Iraq. The research sample was represented by the National Insurance Company. Coverage of the theoretical and deductive approach in covering the practical side, based on the financial records of the National Insurance Company for years of research.One of the most important conclusions reached by the researchers was that forensic accounting has a role
... Show MoreThe research aimed to demonstrate the possibility of benefiting from the coordination between real estate and income tax as the independent variable on the tax outcome as the dependent variable as the dependent variable. Which were practiced within rented buildings, as information was obtained from real estate owners, and the annual controls for the year 2021 were relied upon in the process of calculating the tax amounts expected to be obtained. used in the tax inventory process lacks seriousness and continuous updating
The research explored the impact of applying lean thinking With all that carries this term of goals, trends, principles, foundations and concepts, The possibility of applying it in institutions, including Ur public company, an industrial company, And the only one in Iraq specialized in the manufacture of cables, Electrical Wires and the aluminum industry ,Which has been applied to the curriculum of lean thinking , The problem of research is that the institutions, including the company (research sample), adopt and practice traditional administrative, financial and technical methods without relying on modern curricula and ideas, including the subject of our research, In order to achieve the research objectives, the research was divided int
... Show MoreThe study presents the modification of the Broyden-Flecher-Goldfarb-Shanno (BFGS) update (H-Version) based on the determinant property of inverse of Hessian matrix (second derivative of the objective function), via updating of the vector s ( the difference between the next solution and the current solution), such that the determinant of the next inverse of Hessian matrix is equal to the determinant of the current inverse of Hessian matrix at every iteration. Moreover, the sequence of inverse of Hessian matrix generated by the method would never approach a near-singular matrix, such that the program would never break before the minimum value of the objective function is obtained. Moreover, the new modification of BFGS update (H-vers
... Show MoreAbstract
This paper presents an intelligent model reference adaptive control (MRAC) utilizing a self-recurrent wavelet neural network (SRWNN) to control nonlinear systems. The proposed SRWNN is an improved version of a previously reported wavelet neural network (WNN). In particular, this improvement was achieved by adopting two modifications to the original WNN structure. These modifications include, firstly, the utilization of a specific initialization phase to improve the convergence to the optimal weight values, and secondly, the inclusion of self-feedback weights to the wavelons of the wavelet layer. Furthermore, an on-line training procedure was proposed to enhance the control per
... Show MoreThis study compared and classified of land use and land cover changes by using Remote Sensing (RS) and Geographic Information Systems (GIS) on two cities (Al-Saydiya city and Al-Hurriya) in Baghdad province, capital of Iraq. In this study, Landsat satellite image for 2020 were used for (Land Use/Land Cover) classification. The change in the size of the surface area of each class in the Al-Saydiya city and Al-Hurriya cities was also calculated to estimate their effect on environment. The major change identified, in the study, was in agricultural area in Al-Saydiya city compare with Al-Hurriya city in Baghdad province. The results of the research showed that the percentage of the green