Preferred Language
Articles
/
bsj-9454
Research on Emotion Classification Based on Multi-modal Fusion
...Show More Authors

Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of the three-dimensional dynamic expansion is established based on the common multi-modal data, for example video , sound ,text.Based on the framework, a multi-modal fusion-matched framework based on spatial and temporal feature enhancement, respectively to solve the dynamic correlation within and between modes, and then model the short and long term dynamic correlation information between different modes based on the proposed framework. Multiple group experiments performed on MOSI datasets show that the emotion recognition model constructed based on the framework proposed here in this paper can better utilize the more complex complementary information between different modal data. Compared with other multi-modal data fusion models, the spatial-temporal attention-based multimodal data fusion framework proposed in this paper significantly improves the emotion recognition rate and accuracy when applied to multi-modal emotion analysis, so it is more feasible and effective.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Nov 25 2015
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Subject Independent Facial Emotion Classification Using Geometric Based Features
...Show More Authors

Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Jan 10 2016
Journal Name
British Journal Of Applied Science & Technology
The Effect of Classification Methods on Facial Emotion Recognition ‎Accuracy
...Show More Authors

The interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Sun Mar 17 2019
Journal Name
Baghdad Science Journal
A Study on the Accuracy of Prediction in Recommendation System Based on Similarity Measures
...Show More Authors

Recommender Systems are tools to understand the huge amount of data available in the internet world. Collaborative filtering (CF) is one of the most knowledge discovery methods used positively in recommendation system. Memory collaborative filtering emphasizes on using facts about present users to predict new things for the target user. Similarity measures are the core operations in collaborative filtering and the prediction accuracy is mostly dependent on similarity calculations. In this study, a combination of weighted parameters and traditional similarity measures are conducted to calculate relationship among users over Movie Lens data set rating matrix. The advantages and disadvantages of each measure are spotted. From the study, a n

... Show More
View Publication Preview PDF
Scopus (17)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Delivery Route Management based on Dijkstra Algorithm
...Show More Authors

For businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Oct 03 2009
Journal Name
Proceeding Of 3rd Scientific Conference Of The College Of Science
Research Address: New Multispectral Image Classification Methods Based on Scatterplot Technique
...Show More Authors

Publication Date
Wed Jun 01 2022
Journal Name
Baghdad Science Journal
Advanced GIS-based Multi-Function Support System for Identifying the Best Route
...Show More Authors

Geographic Information Systems (GIS) are obtaining a significant role in handling strategic applications in which data are organized as records of multiple layers in a database. Furthermore, GIS provide multi-functions like data collection, analysis, and presentation. Geographic information systems have assured their competence in diverse fields of study via handling various problems for numerous applications. However, handling a large volume of data in the GIS remains an important issue. The biggest obstacle is designing a spatial decision-making framework focused on GIS that manages a broad range of specific data to achieve the right performance. It is very useful to support decision-makers by providing GIS-based decision support syste

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Oct 29 2019
Journal Name
Journal Of Engineering
Mobile-based Human Emotion Recognition based on Speech and Heart rate
...Show More Authors

Mobile-based human emotion recognition is very challenging subject, most of the approaches suggested and built in this field utilized various contexts that can be derived from the external sensors and the smartphone, but these approaches suffer from different obstacles and challenges. The proposed system integrated human speech signal and heart rate, in one system, to leverage the accuracy of the human emotion recognition. The proposed system is designed to recognize four human emotions; angry, happy, sad and normal. In this system, the smartphone is used to   record user speech and send it to a server. The smartwatch, fixed on user wrist, is used to measure user heart rate while the user is speaking and send it, via Bluetooth,

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
Multifocus Images Fusion Based On Homogenity and Edges Measures
...Show More Authors

Image fusion is one of the most important techniques in digital image processing, includes the development of software to make the integration of multiple sets of data for the same location; It is one of the new fields adopted in solve the problems of the digital image, and produce high-quality images contains on more information for the purposes of interpretation, classification, segmentation and compression, etc. In this research, there is a solution of problems faced by different digital images such as multi focus images through a simulation process using the camera to the work of the fuse of various digital images based on previously adopted fusion techniques such as arithmetic techniques (BT, CNT and MLT), statistical techniques (LMM,

... Show More
View Publication Preview PDF
Crossref