Preferred Language
Articles
/
bsj-9120
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has 350 images. Three fully connected (FC) layers were utilized for feature extraction, namely fc6, fc7, and fc8. The classifiers employed were support vector machine (SVM), k-nearest neighbors (KNN), and Naive Bayes. The study demonstrated that the most effective feature extraction layer was fc6, achieving an accuracy of 90.7% with SVM. SVM outperformed KNN and Naive Bayes, exhibiting an accuracy of 90.7%, sensitivity of 83.5%, specificity of 93.7%, and F1-score of 83.5%. This research successfully addressed the challenges in classifying cassava species by leveraging deep learning and machine learning methods, specifically with SVM and the fc6 layer of AlexNet. The proposed approach holds promise for enhancing plant classification techniques, benefiting researchers, farmers, and environmentalists in plant species identification, ecosystem monitoring, and agricultural management.

Scopus Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Wed Jan 25 2023
Journal Name
Molecular Simulation
Engineering promising A-π-D type molecules for efficient organic-based material solar cells
...Show More Authors

Within this work, to promote the efficiency of organic-based solar cells, a series of novel A-π-D type small molecules were scrutinised. The acceptors which we designed had a moiety of N, N-dimethylaniline as the donor and catechol moiety as the acceptor linked through various conjugated π-linkers. We performed DFT (B3LYP) as well as TD-DFT (CAM-B3LYP) computations using 6-31G (d,p) for scrutinising the impact of various π-linkers upon optoelectronic characteristics, stability, and rate of charge transport. In comparison with the reference molecule, various π-linkers led to a smaller HOMO–LUMO energy gap. Compared to the reference molecule, there was a considerable red shift in the molecules under study (A1–A4). Therefore, based on

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Sep 24 2021
Journal Name
Indonesian Journal Of Chemistry
Molecular Imprinted of Nylon 6 for Selective Separation of Procaine by Solid-Phase Extraction
...Show More Authors

The study is based on the selective binding ability of the drug compound procaine (PRO) on a surface imprinted with nylon 6 (N6) polymer. Physical characterization of the polymer template was performed by X-ray diffraction and DSC thermal analysis. The imprinted polymer showed a high adsorption capacity to trap procaine (237 µg/g) and excellent recognition ability with an imprinted factor equal to 3.2. The method was applied to an extraction column simulating a solid-phase extraction to separate the drug compound in the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate more than the presence of tinoxicam and nucleosimide separately and in a mixture of them with a recovery rate of more t

... Show More
View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Lineament automatic extraction analysis for Galal Badra river basin using Landsat 8 satellite image
...Show More Authors

This research including lineament automated extraction by using PCI Geomatica program, depending on satellite image and lineament analysis by using GIS program. Analysis included density analysis, length density analysis and intersection density analysis. When calculate the slope map for the study area, found the relationship between the slope and lineament density.
The lineament density increases in the regions that have high values for the slope, show that lineament play an important role in the classification process as it isolates the class for the other were observed in Iranian territory, clearly, also show that one of the lineament hit shoulders of Galal Badra dam and the surrounding areas dam. So should take into consideration

... Show More
View Publication Preview PDF
Crossref (14)
Crossref
Publication Date
Sun Oct 01 2017
Journal Name
Journal Of Educational And Psychological Researches
The effect of using active learning model in the achievement of fourth -grade material in the de partment of physics teaching aids students and the development then critical thinking
...Show More Authors

Goal  of  research  is  to  investigate  the  impact  of the  use  of  effective  learning  model in the  collection  of  the  fourth  grade  students/Department of  physics in the material  educational methods  and the  development  of  critical thinking  .to teach  this goal  has  been  formulated  hypothesis cefereeten zero  subsidiary  of the second hypothesis  .To  investigate  the  research  hypothesis  were  selected  sample  of  fourth-grade  students of the  department  of physics at the univers

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus (1)
Scopus
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Comparative analysis of deep learning techniques for lung cancer identification
...Show More Authors

One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Thu Jun 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
An optimized deep learning model for optical character recognition applications
...Show More Authors

The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Mar 13 2025
Journal Name
Academia Open
Deep Learning and Fusion Techniques for High-Precision Image Matting:
...Show More Authors

General Background: Deep image matting is a fundamental task in computer vision, enabling precise foreground extraction from complex backgrounds, with applications in augmented reality, computer graphics, and video processing. Specific Background: Despite advancements in deep learning-based methods, preserving fine details such as hair and transparency remains a challenge. Knowledge Gap: Existing approaches struggle with accuracy and efficiency, necessitating novel techniques to enhance matting precision. Aims: This study integrates deep learning with fusion techniques to improve alpha matte estimation, proposing a lightweight U-Net model incorporating color-space fusion and preprocessing. Results: Experiments using the AdobeComposition-1k

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
...Show More Authors

View Publication
Scopus (17)
Crossref (30)
Scopus Clarivate Crossref
Publication Date
Sun Apr 03 2016
Journal Name
Journal Of Educational And Psychological Researches
The effect of the differences in the correlation pattern of the micro blogging in the educational attainment of computer science curriculum for 12th grade students
...Show More Authors

The object of this research is to determine the effect in the differences of the correlation pattern of the micro blogging on the educational attainment of computer science curriculum for 12th grade students. I will try to test the best suited correlation and I might use the demo curriculum as well to achieve its objectives , The research method that will be used in this research is the quantitative method where we will use a sample of 60 students divided into two groups ( correlate the micro blogging - adopted the sequence pattern of relating the micro blogging) As a result, we found out that there are quantitative differences among the two groups' median , The differences goes back to the main effect of the correlation pattern of the m

... Show More
View Publication Preview PDF