These days, it is crucial to discern between different types of human behavior, and artificial intelligence techniques play a big part in that. The characteristics of the feedforward artificial neural network (FANN) algorithm and the genetic algorithm have been combined to create an important working mechanism that aids in this field. The proposed system can be used for essential tasks in life, such as analysis, automation, control, recognition, and other tasks. Crossover and mutation are the two primary mechanisms used by the genetic algorithm in the proposed system to replace the back propagation process in ANN. While the feedforward artificial neural network technique is focused on input processing, this should be based on the process of breaking the feedforward artificial neural network algorithm. Additionally, the result is computed from each ANN during the breaking up process, which is based on the breaking up of the artificial neural network algorithm into multiple ANNs based on the number of ANN layers, and therefore, each layer in the original artificial neural network algorithm is assessed. The best layers are chosen for the crossover phase after the breakage process, while the other layers go through the mutation process. The output of this generation is then determined by combining the artificial neural networks into a single ANN; the outcome is then checked to see if the process needs to create a new generation. The system performed well and produced accurate findings when it was used with data taken from the Vicon Robot system, which was primarily designed to record human behaviors based on three coordinates and classify them as either normal or aggressive.
The study showed flow rates and the interaction between the settlements served by applying the model of gravity theory to measure depending on the number of the population between city Najaf and the rest of the other settlements served and using three functions of disability, time and cost, as recorded an increase in the interaction index with some settlements like them Kufa, Abbasid and Manathira, while the indicator contrast was in other settlements, either when the application of the gravity model depending on trips and socio-economic characteristics accuracy rate was more pronounced.
In this article we study a single stochastic process model for the evaluate the assets pricing and stock.,On of the models le'vy . depending on the so –called Brownian subordinate as it has been depending on the so-called Normal Inverse Gaussian (NIG). this article aims as the estimate that the parameters of his model using my way (MME,MLE) and then employ those estimate of the parameters is the study of stock returns and evaluate asset pricing for both the united Bank and Bank of North which their data were taken from the Iraq stock Exchange.
which showed the results to a preference MLE on MME based on the standard of comparison the average square e
... Show More0
Security reflects a permanent and complex movement that complies with international and societal needs and developments in all its dimensions, interactions and levels. To constitute a universal demand for all States, communities and individuals. The question of security is one of the most important motivations and motivations that govern the behavior, and even the objectives of those societies and States. These groups or individuals have always sought to avoid fear and harm, and to provide stability, safety and security. In the light of this, security studies have been among the important fields of study in the field of international and strategic relations. The field witnessed many theoretical efforts, from the traditional perspective,
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show MoreArtificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le
... Show More