In this research work, the novel polymer base on acrylamide N-methylene lactic and glycolic acid was synthesized and its structural performances were identified by the IR, 1H NMR and 13C NMR spectroscopic investigations. The influencing factors and kinetics of polymerization, viscosity performance were studied and quantum chemical calculations were used to identify the correlation between the structure and properties. It was determined that the polymerization rate of the examined monomers in an aqueous solution, in the presence of DAA, adheres to the standard rules for radical polymerization of acrylamide monomers in solution. An investigation into the pH solution's impact on the kinetics of radical polymerization of acrylamido-N-methylene glycolic and acrylamido-N-methylene lactic acids revealed an extreme dependence with a minimum in a neutral medium. It was found the linear correlation between pH and viscosity. The physical and chemical performance of this polymer depends on the structural parameters related the results of quantum chemical calculation. Biological tests conducted on polyacrylamido-N-methylene lactic acid indicated its potential as a plant growth stimulator. The polymeric form of lactic acid was found to enhance the growth of Dustlik variety wheat seedlings by 40% more efficiently than lactic acid alone.
Heavy metal ion removal from industrial wastewater treatment systems is still difficult because it contains organic contaminants. In this study, functional composite hydrogels with photo Fenton reaction activity were used to decompose organic contaminants. Fe3O4 Nanoparticle, chitosan (CS), and other materials make up the hydrogel. There are different factors that affected Photo-Fenton activity including (pH, H2O2 conc., temp., and exposure period). Atomic force microscopy was used to examine the morphology of the composite and its average diameter (AFM). After 60 minutes of exposure to UV radiation, CS/ Fe3O4 hydrogel composite had degraded methylene blue (M.B.)
... Show MoreSome physical properties enthalpy (?H), entropy (?s), free energy (?G),capacities(?cp?) and Pka values) for valine in dimethyl foramideover the temperature range 293.15-318.15K, were determined by direct conductance measurements. The acid dissociation at six temperature was examined at solvent composition x2) involving 0.141 of dimethyl foramide . As results, calculated values have been used to determine the dissociation constant and the associated thermodynamic function for the valine in the solvent mixture over temperatures in the range 293.15-318.15 k. The Pka1, and Pka2 were increased with increasing temperature.
The development of economic and environmentally friendly extractants to recover cobalt metal is required due to the increasing demand for this metal. In this study, solvent extraction of Co(II) from aqueous solution using a mixture of N,N0-carbonyl difatty amides (CDFAs) synthesised from palm oil as the extractant was carried out. The effects of various parameters such as acid, contact time, extractant concentration, metal ion concentration and stripping agent and the separation of Co(II) from other metal ions such as Fe(II), Ni(II), Zn(III) and Cd(II) were investigated. It was found that the extraction of Co(II) into the organic phase involved the formation of 1:1 complexes. Co(II) was successfully separated from commonly associated metal
... Show Moresanaa tareq, Baghdad Science Journal, - Cited by 1
A new copolymer (MFA) was prepared from condensation of melamine (M) with p- methyl – anisole (A) in the presence of condensation agent like 37% (w/v) of formaldehyde. The new copolymer was characterized by elemental, IR and HNMR spectra. The chelating ion-exchange property of this polymer was studied for methylene blue dye in aqueous solution in 100-200ppm concentrations. The adsorption study was carried out over a wide range of pH, shaking time and in media of various kinetic parameters models. Thermal parameters like enthalpy, entropy and Gibbs free energy of adsorption process of methylene blue on surface of MFA resin were determined on the basis of kinetic parameters at different temperatures. To describe the equilibrium of adsorp
... Show MoreNew Fe(II),Co(II),Ni(II),Cu(II) and Zn(II) Schiff base complexes which have the molar ratio 2:1 metal to ligand of the general formula [M2( L) X4] (where L=bis(2-methyl furfuraldene)-4-4`-methylene bis(cyclo-hexylamine) ) were prepared by the reaction of the metal salts with the ligand of Schiff base derived from the condensation of 2:1 molar ratio of 2-acetyl furan and 4-4`-methylene bis (cyclohexylamine). The complexes were characterized by elemental analysis using atomic absorption spectrophotometer ,molar conductance measurements, infrared, electronic spectra,and magnetic susceptibility measurement. These studies revealed binuclear omplexes. The metal(II) ion in these complexes have four coordination sites giving the most ex
... Show MoreIn this research, design of advanced material for sunlight conversion requires focused research to obtain efficient photocatalytic system. Nanostructured ZnO was synthesized using spin coating technique. The structural, morphological and optical properties of annealed nanostructured ZnO thin film at 390 Co for 3 hours were characterized by x-ray diffraction, atomic force microscope AFM and UV-VIS spectrophotometer. Nanostructured ZnO was applied for removal Methylene Blue (MB) dye from water using sunlight induced photocatalytic process. Overall degradation of MB/ZnO was achieved after 120 minutes of sunlight irradiation while it needs more time for MB alone. The reaction rate constant fit pseudo first order for MB/ZnO degradation was 0.
... Show MoreIn this study, investigations of structural properties of n-type porous silicon prepared by laser assisted-electrochemical etching were demonstrated. The Photo- electrochemical Etching technique, (PEC) was used to produce porous silicon for n-type with orientation of (111). X-ray diffraction studies showed distinct variations between the fresh silicon surface and the synthesized porous silicon surfaces. Atomic force microscopy (AFM) analysis was used to study the morphology of porous silicon layer. AFM results showed that root mean square (RMS) of roughness and the grain size of porous silicon decreased as etching current density increased. The chemical bonding and structure were investigated by using fourier transformation infrared spec
... Show MoreSulfamethoxazole (SMX) was added to P-N,N-dimethyl amino benzaldehyde (PDAB) by condensation reaction in acidic medium to form, a yellow colored dye compound which exhibits maximum absorption (λmax) at 450.5 nm. The concentration of (SMX) was determined spectrophotometrically. The optimum reaction conditions and other analytical parameters were evaluated. In addition to classical univariate optimization, design of experiment method has been applied in optimization of the variables affecting the color producing reaction. Beer’s law obeyed in the concentration range of 0.1-10 μg.mL-1 with molar absorptivity of 5.7950×104 L.mol-1.cm-1. The limit of detection and Sandell's sensitivity value were 0.078 μ
... Show More