Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforward neural network (FNN) model. Data acquisition involved 60 subjects diagnosed with the studied cases. The implementation of FNN achieved an accuracy of 96.6% using 50% of the dataset as training data and 92.8% using only 30% training data. The comparison with related work shows good impact of using the differential values of pressure points as input for neural networks compared with raw data.
This study aimed to evaluate the effectiveness of a novel concrete-encased column (CE) using small circular steel tubes filled with cementitious grouting material (GFST) as the primary reinforcement instead of traditional steel bars. The research involved three different types of reinforcement: conventional steel bars, concrete-filled steel tubes with 30% of the reinforcement ratio of steel bars, and concrete-filled steel tubes with the same reinforcement ratio as steel bars. Twenty-four circular concrete columns were tested and categorized into six groups based on the type of reinforcement employed. Each group comprised four columns, with one subjected to concentric axial load, two subjected to eccentric axial load (with eccentrici
... Show MoreThis paper studied the behaviour of reinforced reactive powder concrete (RPC) two-way slabs under static load. The experimental program included testing three simply supported slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. Tested specimens were of identical properties except their steel fibers volume ratio (0.5 %, 1 %, and 1.5 %). Static test results revealed that, increasing steel fibers volume ratio from 0.5% to 1% and from 1% to 1.5%, led to an increase in: first crack load by (32.2 % and 52.3 %), ultimate load by (36.1 % and 17.0 %), ultimate deflection by (33.6 % and 3.4 %), absorbed energy by (128 % and 20.2 %), and the ultimate strain by (1.1 % and 6.73 %). The stiffness and ductility of the specimens also increased. A
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreIn data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.
Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreIn this paper a dynamic behavior and control of a jacketed continuous stirred tank reactor (CSTR) is developed using different control strategies, conventional feedback control (PI and PID), and neural network (NARMA-L2, and NN Predictive) control. The dynamic model for CSTR process is described by a first order lag system with dead time.
The optimum tuning of control parameters are found by two different methods; Frequency Analysis Curve method (Bode diagram) and Process Reaction Curve using the mean of Square Error (MSE) method. It is found that the Process Reaction Curve method is better than the Frequency Analysis Curve method and PID feedback controller is better than PI feedback controller.
The results s
... Show MoreMicroorganisms have an active role in biotechnology for example yeasts, especially in some genus like Saccharomyces, Pichia, and Candida. C.tropicalis one of the most important species of Candida and despite it is one of the causative agents of candidiasis but it has a major role in the production of many chemical compounds. C.tropicalis in the previous study was isolated from sheep dung and morphologically and molecularly classified the result of sequencing was elucidate 100% similarity between the studied isolate and other isolates inserted in DNA Data Bank of Japan DDBJ, physiologically this isolate tolerated 6% ethanol concentration in broth media with the ability to the pro
... Show More
Liquefied petroleum gas (LPG), Natural gas (NG) and hydrogen were used to operate spark ignition internal combustion engine Ricardo E6, to compare NOx emissions emitted from the engine, with that emitted from engine fueled with gasoline as a fuel.
The study was done when engine operated at HUCR for gasoline, compared with its operation at HUCR for each fuel. Compression ratio, equivalence ratio and spark timing were studied at constant speed 25rps.
The results appeared that NOx concentrations will be at maximum value in the lean side near the stoichiometric ratio, and reduced with moving away from this ratio for mixture at both s
... Show MoreIn this study, the behavior of screw piles models with continuous helix was studied by conducting laboratory experimental tests on a single screw pile that has several aspect ratios (L/D) under the influence of static axial compression loads. The screw piles were inserted in a soft soil that has a unit weight of 18.72 kN/m3 and moisture content of 30.19%. Also, the soil has a liquid limit of 55% and a plasticity index of 32%. A physical laboratory model was designed to investigate the ultimate compression capacity of the screw pile and measure the generated porewater pressure during the loading process. The bedding soil was prepared according to the field unit weight and moisture content and the failure load was assumed correspondin
... Show More