Sensing insole systems are a promising technology for various applications in healthcare and sports. They can provide valuable information about the foot pressure distribution and gait patterns of different individuals. However, designing and implementing such systems poses several challenges, such as sensor selection, calibration, data processing, and interpretation. This paper proposes a sensing insole system that uses force-sensitive resistors (FSRs) to measure the pressure exerted by the foot on different regions of the insole. This system classifies four types of foot deformities: normal, flat, over-pronation, and excessive supination. The classification stage uses the differential values of pressure points as input for a feedforward neural network (FNN) model. Data acquisition involved 60 subjects diagnosed with the studied cases. The implementation of FNN achieved an accuracy of 96.6% using 50% of the dataset as training data and 92.8% using only 30% training data. The comparison with related work shows good impact of using the differential values of pressure points as input for neural networks compared with raw data.
A progression of Polyaniline (PANI) and Titanium dioxide (TiO2) nanoparticles (NPs) were prepared by an in-situ polymerization strategy within the sight of TiO2 NPs. The subsequent nanocomposites were analyzed using Fourier-transform infrared spectra (FTIR), X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-Ray Analysis (EDX) taken for the prepared samples. PANI/TiO2 nanocomposites were prepared by various compound materials (with H2SO4 0.3 M and without it, to compare the outcome of it) by the compound oxidation technique using ammonium persulfate (APS) as oxidant within the sight of ultrafine grade powder of TiO2 cooled in an ice bath.
... Show MoreIn this research, titanium dioxide nanoparticles (TiO2 NPs) were prepared through the sol-gel process at an acidic medium (pH3).TiO2 nanoparticles were prepared from titanium trichloride (TiCl3) as a precursor with Ammonium hydroxide (NH4OH) with 1:3 ratio at 50 °C. The resulting gel was dried at 70 °C to obtain the Nanocrystalline powder. The powder from the drying process was treated thermally at temperatures 500 °C and 700 °C. The crystalline structure, surface morphology, and particle size were studied by using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscope (SEM). The results showed (anatase) phase of titanium dioxide with the average grain size
... Show MoreUnconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show MoreThe objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show MoreBanks face different types of banking risks that limit the performance of its functions and achieve its objectives, including the financial risk that is based on current research into two types including a credit and liquidity risks. And established credit risk due to the possibility of delaying the borrowers to fulfill their obligations to the bank when due or non-payments on according to the terms agreed upon, while liquidity risk arises as a result of the inability of the bank to fund the financial needs, any inability to provide cash to pay its obligations short on credit without achieving tangible loss or the inability to employ the funds properly and show the liquidity risk in the event of inadequate cash inflows to the bank for an
... Show MoreThe study using Nonparametric methods for roubust to estimate a location and scatter it is depending minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .
It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu
... Show MoreThe research aims to measure the extent of the impact of Earnings quality in the continuity of the company for a sample of private commercial banks listed on the Iraq Stock Exchange. The research sample included (15) of the listed commercial banks that continue to issue their financial statements for the period from (2009-2018).The research relied on three main models of measurement and on four steps. The first step is to measure the Persistence (Earnings Quality) by Depending the sustainability model. While the second step included measuring the Predictability of accounting profits by deriving the square root of the disparity of the estimation error from the first model Persistence (Earnings Quality), and the third step included
... Show MoreAbstract: Stars whose initial masses are between (0.89 - 8.0) M☉ go through an Asymptotic Giant Branch (AGB) phase at the end of their life. Which have been evolved from the main sequence phase through Asymptotic Giant Branch (AGB). The calculations were done by adopted Synthetic Model showed the following results: 1- Mass loss on the AGB phase consists of two phases for period (P <500) days and for (P>500) days; 2- the mass loss rate exponentially increases with the pulsation periods; 3- The expansion velocity VAGB for our stars are calculated according to the three assumptions; 4- the terminal velocity depends on several factors likes metallicity and luminosity. The calculations indicated that a super wind phase (S.W) developed on the A
... Show MoreIn this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9937) and followed pseudo second order kinetic. The hi
... Show More