The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.
The current study aimed to identify the difficulties faced by the student in mathematics and possible proposals to address these difficulties. The study used a descriptive method also used the questionnaire to collect data and information were applied to a sample of (163) male and female teachers. The results of the study found that the degree of difficulties in learning mathematics for the fifth and sixth grades is high for some paragraphs and intermediate for other paragraphs, included the student's field. The results also revealed that there were no statistically significant differences at the level of significance (α = 0.05) between the responses of the members of the study sample from male and female teachers to the degree of diffi
... Show MoreAbstract
This research was conducted to test the hypothesis (There is no significant moderating effect for Dramaturgy on the relationship between impression management strategies and PTSD), (45) employees in Iraqi drilling company (Basra province) were selected as a sample. Findings showed that the percentage (0.91%) of the employees who are exposed to accidents as a result of work suffer from post traumatic stress disorder, which negatively affects their organizational behavior, thereby, reducing future performance, findings also showed that the employment of impression management strategies will assist management to address PTSD among employees wh
... Show MoreWill address this research interaction and coordination between fiscal and monetary policies and the impact of this interaction and coordination on economic stability and growth، and how the financial implications of monetary policy may stimulate action monetary policy and treatment side effects and the nature of responsiveness and bounce between procedures both two policies and their impact on the balance of overall economic and explained in the folds of searchjustifications coordination and the extent necessary in order to address the imbalances in economic activity through twinning actions of monetary and fiscal، has embodied this coordination and interaction between policies and their impact m
... Show MoreBackground: The COVID-19 pandemic has an immense effect not only on the social and economic lives of people but also on the surgical lives of surgeons, residents, nursing staff, and patients as well as ground level staff. Amidst this COVID pandemic, emergency surgeries were being done but at a decreased rate, whereas elective cases depended on the will of hospitals, surgeons, and patients. Study aims to promulgate a "Neo–Surgical Check Box" by amalgamating the WHO surgical checklist and the results obtained from the questionnaires.
Subjects and Methods: After receiving ethical clearance from the Institute Ethical Committee, an online questionnaire with 50 questions divided into
... Show MoreThe successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi
... Show MoreObjective: The objectives of the present study were to evaluate the effectiveness of the instructional intervention
about medical and health knowledge of patients with diabetes mellitus type II.
Methodology: A Quasi- experimental study was carried out in National Center for Diabetes Mellitus/ Almustansria
University, started from 4th January 2012, to 1st April 2012. Non-probability (purposive sample) of (50) diabetes
mellitus type II, who visit National Center for Diabetes Mellitus/ Almustansria University. The study sample is
divided equally into (25) study and (25) control groups. The study group received the instructional intervention.
While the control not exposed to the instructional intervention. The data are coll
This research includes a study of dezincification by corrosion from brass alloys in three types of media, which are acidic solution, basic and slat solution in different percentages. The study show the higher dezincification occurs in basic solution which decrease the fatigue properties where the fatigue properties are inversely proportional with dezincification.
Experiments were conducted to study axial liquid dispersion coefficient in slurry bubble column of 0.15 m inside diameter and 1.6 m height using perforated plate gas distributor of 54 holes of a size equal to 1 mm diameter and with a 0.24 free area of holes to the cross sectional area of the column. The three phase system consists of air, water and PVC used as the solid phase. The effect of solid loading (0, 30 and 60 kg/m3) and solid diameter (0.7, 1.5 and 3 mm) on the axial liquid dispersion coefficient at different axial location (25, 50 and 75 cm) and superficial gas velocity covered homogeneous-heterogeneous flow regime (1-10 cm/s) were studied in the present work. The results show that the axial liquid dispersion coeffic
... Show MoreThe aim of this study to evaluate the effects of die holes diameter and speed of die on the performance of machine and feed pellet quality. Machine productivity (Kg.h-1), consumed power (kW), pellet durability (%) and pellet bulk density (g.cm-3) was studied. The study factors consisted of three diameter of die holes (3, 4, and 5 mm), and three speeds die (280, 300, and 320 rpm). Results showed with increasing of die holes diameter from 3 to 4 and to 5 mm give a significant increase in machine productivity, while consumed power, pellet durability and pellet bulk density a significant decreased. By increasing the die speed, from 280 to 300 then to 320 rpm, the machine productivity increased significantly, while consumed power, pellet durabil
... Show MoreThe growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show More