The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.
The growth of developments in machine learning, the image processing methods along with availability of the medical imaging data are taking a big increase in the utilization of machine learning strategies in the medical area. The utilization of neural networks, mainly, in recent days, the convolutional neural networks (CNN), have powerful descriptors for computer added diagnosis systems. Even so, there are several issues when work with medical images in which many of medical images possess a low-quality noise-to-signal (NSR) ratio compared to scenes obtained with a digital camera, that generally qualified a confusingly low spatial resolution and tends to make the contrast between different tissues of body are very low and it difficult to co
... Show MoreDue to the need for controlling and regulating of feed pellet. Pellet that is imported or locally manufactured is accompanied by cracking and crumbling percentage that occur during transporting and distributing to animals, using conveyors and mechanical feeders. This study aimed to determine the effect of particle size and die holes diameter in the machine on broiler feed pellets quality in pellet durability, pellet direct measurement, pellet expansion, and pellet length. Three particle size 2, 4, and 6 mm, and three diameters of die holes in the machine 3, 4, and 5 mm, have been used. The results showed that changing the particle size from 2 to 4 then to 6 mm led to a significant decrease in pellet durability and pellet lengths, pe
... Show MoreCommunicative-based textbooks are developed and disseminated throughout the country.
However, it is difficult for teachers who themselves have learnt English through the traditional
approaches to suddenly be familiar with CLT (Communicative Language Teaching) principles
and teach communicatively. Therefore, many teachers remain somewhat confused about what
exactly CLT is and others familiar with CLT but unable to achieve communicative classroom
teaching. Consequently, those teachers need to be introduced to the CLT principles and they need
training in how to put CLT principles into practice. Accordingly, this study aims to find out the
effect of combining video lectures and Kolb experiential learning on EFL student-t
The objective of this study was to investigate the drought stress and plant density possibility on water productivity and grain yield of maize (Zea mays L.) (Planting Baghdad 3 synthetic varieties), Field experiment was conducted at Abu Ghraib Research Station (Baghdad) during spring and Autumn seasons of 2016 using a randomized complete block design arranged in split plot with three replications. Three irrigation treatment included: irrigation after depletion 50% of available water (T1), irrigation after depletion 75% of available water (T2) and irrigation after depletion 90% of available water (T3) in the main plots and three plant density which were: 1 seeds hill-1 (D1) giving a uniform plant density of 66666 plants ha-1 , 2 seeds hill1
... Show MoreObjective: The study aims to determine the effect of Toxoplasma gondii infection on the
genetic sequence of breast cancer patients in the Medical City Hospital – Tumor Unit /
Iraq-Baghdad.
Methodology: A study was carried out in the City of Medicine / Oncology Unit / Baghdad,
during the period 1st June 2016 to 15
th March 2017. Forty samples of tissue and serum
were collected from patients who complaining from Breast cancer and infected with
Toxoplasmosis. Forty sera samples were taken from patients complaining from parasitic
infection only; without breast cancer as control group. Data is analyzed by using of
descriptive and inferential data analysis methods.
Results: The results show that there is an effe
Software-Defined Networking (SDN) has evolved network management by detaching the control plane from the data forwarding plane, resulting in unparalleled flexibility and efficiency in network administration. However, the heterogeneity of traffic in SDN presents issues in achieving Quality of Service (QoS) demands and efficiently managing network resources. SDN traffic flows are often divided into elephant flows (EFs) and mice flows (MFs). EFs, which are distinguished by their huge packet sizes and long durations, account for a small amount of total traffic but require disproportionate network resources, thus causing congestion and delays for smaller MFs. MFs, on the other hand, have a short lifetime and are latency-sensitive, but they accou
... Show More<span>Blood donation is the main source of blood resources in the blood banks which is required in the hospitals for everyday operations and blood compensation for the patients. In special cases, the patients require fresh blood for compensation such as in the case of major operations and similar situations. Moreover, plasma transfusions are vital in the current pandemic of coronavirus disease (COVID-19). In this paper, we have proposed a donation system that manages the appointments between the donors and the patient in the case of fresh blood donation is required. The website is designed using the Bootstrap technology to provide suitable access using the PC or the smart phones web browser. The website contains large database
... Show MoreBackground: Despite the importance of vaccines in preventing COVID-19, the willingness to receive COVID-19 vaccines is lower among RA patients than in the general population. Objective: To determine the extent of COVID-19 knowledge among RA patients and their attitudes and perceptions of COVID-19 vaccines. Methods: A qualitative study with a phenomenology approach was performed through face-to-face, individual-based, semi-structured interviews in the Baghdad Teaching Hospital, Baghdad, Iraq, rheumatology unit. A convenient sample of RA patients using disease-modifying anti-rheumatic drugs was included until the point of saturation. A thematic content analysis approach was used to analyze the obtained data. Results: Twenty-five RA pa
... Show More