The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.
<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show MoreThis paper aims at providing the teaching staff members with the necessary skills so as to become capable of tackling various situations, and treating daily problems that face students learning Spanish as a Second Language. This is made as an attempt to make teachers of foreign languages in general acquainted with modern trends of teaching with less complicated methods, specifically in teaching e earlier stages of foreign languages.
Abstracto:
En el presente trabajo pretendemos dotar al docente no nativo de Lenguas extranjeras, con algunos de los métodos necesari
... Show MoreBackground and Purpose: Coronavirus has posed an unfamiliar threat to the world. Despite such circumstances, Malaysians continue to stay optimistic by keeping abreast with updates and mostly by seeking refuge in hopeful and consoling messages shared by fellow citizens. This study identified Facebook postings with positive messages, posted by Malaysians during the Movement Control Order (MCO) implemented by the Malaysian government as a form of prosocial behaviour. Methodology: Through an analytic framework consisting of Positive Discourse Analysis and Critical Discourse Analysis, 15 Facebook postings related to COVID-19 were selected and identified as positive discourse, which were coded and categorised using a thematic analysi
... Show MoreBACKGROUND: The number of coronavirus disease-19 (COVID-19) positive patients and fatalities keeps rising. It is important to recognize risk factors for severe outcomes. Evidence linking vitamin D deficiency and the severity of COVID-19 is tangential but substantial – relating to race, obesity, and institutionalization. OBJECTIVE: This study aims to examine the function of vitamin D and nutritional defense against infections such as COVID-19, which is the goal of this research. METHODS: This study includes observational cohort, cross-sectional, and case-control studies that estimated variances in serum levels of vitamin D among patients with mild or severe forms of COVID-19, and in patients who died or were discharged from hospit
... Show MoreCOVID-19 is a unique viral infectious illness that causes a variety of symptoms and health hazards, particularly to the respiratory system and has been declared a worldwide pandemic. The disease is characterized by a cytokine release in severe conditions. Interleukin-6 (IL-6), a proinflammatory cytokine, mediates an important immunomodulatory process. Also, vitamin D was identified to have a role in the innate immunity of individuals. Our study was designed to find the role of IL-6 and vitamin D in COVID-19 patients, as well as, to see whether there is a link between vitamin D deficiency and cytokine syndrome development. The study included 90 COVID-19 patients and 30 control people from Baghdad, Iraq. The age of the participants was non-s
... Show MoreThis study aims to find the chemosensitive dysfunction incidence in COVID-19-positive patients and its recovery.
We collected the data from sixty-five patients, all COVID-19 positive, quarantined in-hospital between 5 April 2020 and 17 May 2020, by a questionnaire distributed in the quarantine ward.
Smell dysfunction appeared in 89.23% with or without other symptoms of COVID-19. 39.66% of them recovered the sense of smell. Taste dysfunction found in 83.08% patients with other COVID-19 symptoms. Only 29.63% of them recovered. The recovery took 1–3 weeks, and most