The COVID-19 pandemic has profoundly affected the healthcare sector and the productivity of medical staff and doctors. This study employs machine learning to analyze the post-COVID-19 impact on the productivity of medical staff and doctors across various specialties. A cross-sectional study was conducted on 960 participants from different specialties between June 1, 2022, and April 5, 2023. The study collected demographic data, including age, gender, and socioeconomic status, as well as information on participants' sleeping habits and any COVID-19 complications they experienced. The findings indicate a significant decline in the productivity of medical staff and doctors, with an average reduction of 23% during the post-COVID-19 period. These results reflect the overall impact observed following the entire course of the COVID-19 pandemic and are not specific to a particular wave. The analysis revealed that older participants experienced a more pronounced decline in productivity, with a mean decrease of 35% compared to younger participants. Female participants, on average, had a 28% decrease in productivity compared to their male counterparts. Moreover, individuals with lower socioeconomic status exhibited a substantial decline in productivity, experiencing an average decrease of 40% compared to those with higher socioeconomic status. Similarly, participants who slept for fewer hours per night had a significant decline in productivity, with an average decrease of 33% compared to those who had sufficient sleep. The machine learning analysis identified age, specialty, COVID-19 complications, socioeconomic status, and sleeping time as crucial predictors of productivity score. The study highlights the significant impact of post-COVID-19 on the productivity of medical staff and doctors in Iraq. The findings can aid healthcare organizations in devising strategies to mitigate the negative consequences of COVID-19 on medical staff and doctors' productivity.
Many production companies suffers from big losses because of high production cost and low profits for several reasons, including raw materials high prices and no taxes impose on imported goods also consumer protection law deactivation and national product and customs law, so most of consumers buy imported goods because it is characterized by modern specifications and low prices.
The production company also suffers from uncertainty in the cost, volume of production, sales, and availability of raw materials and workers number because they vary according to the seasons of the year.
I had adopted in this research fuzzy linear program model with fuzzy figures
... Show MoreA novel analytical method is developed for the determination of azithromycin. The method utilizes continuous flow injection analysis to enhance the chemiluminescence system of luminol, H2O2, and Cr(III). The method demonstrated a linear dynamic range of 0.001–100 mmol L-1 with a high correlation coefficient (r) of 0.9978, and 0.001–150 mmol L-1 with a correlation coefficient (r) of 0.9769 for the chemiluminescence emission versus azithromycin concentration. The limit of detection (L.O.D.) of the method was found to be 18.725 ng.50 µL−1 based on the stepwise dilution method for the lowest concentration within the linear dynamic range of the calibration graph. The relative standard deviation (R.S.D. %) for n = 6 was less than 1.2%
... Show MoreThis paper aims to validate a proposed finite element model to be adopted in predicting displacement and soil stresses of a piled-raft foundation. The proposed model adopts the solid element to simulate the raft, piles, and soil mass. An explicit integration scheme has been used to simulate nonlinear static aspects of the piled-raft foundation and to avoid the computational difficulties associated with the implicit finite element analysis.
The validation process is based on comparing the results of the proposed finite element model with those of a scaled-down experimental work achieved by other researchers. Centrifuge apparatus has been used in the experimental work to generate the required stresses to simulate t
... Show MoreCrop diseases are usually caused by inoculum of pathogens which might exist on alternate hosts or weeds as endophytes. These endophytes, cum pathogens, usually confer some beneficial attributes to these weeds or alternate hosts from protection against herbivores, disease resistance, stress tolerance to secondary metabolites production. This study was therefore carried out to isolate potential crop pathogens which exist as endophytes on weed species in the University of Ilorin plantations. Green asymptomatic leaves were collected from 10 weed species across the plantations, and processed for their endophytic fungi isolation. Isolates were purified into pure cultures and used for molecular identification using the internal transcribed spac
... Show MoreIn this paper, integrated quantum neural network (QNN), which is a class of feedforward
neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that
... Show MoreA comparative investigation of the anatomical characters through a microscopical examination of the prepared transverse sections of the stem was carried out. Six plates with 32 photomicrographs were provided to convincingly show the considerable variations of anatomical characters within the nine examined species. The matrix of 18 anatomical characters which included nine quantitative and nine qualitative was applied for the clustering analysis (CA) followed by the principal component analysis (PCA) using the Multivariate Analysis of Ecological Data, PC-ORD.
The results exhibited significant variations among the species resulting in the construction of an artificial key; this key accurately represents a sufficient tool to display the
Speech recognition is a very important field that can be used in many applications such as controlling to protect area, banking, transaction over telephone network database access service, voice email, investigations, House controlling and management ... etc. Speech recognition systems can be used in two modes: to identify a particular person or to verify a person’s claimed identity. The family speaker recognition is a modern field in the speaker recognition. Many family speakers have similarity in the characteristics and hard to identify between them. Today, the scope of speech recognition is limited to speech collected from cooperative users in real world office environments and without adverse microphone or channel impairments.
The proposed design of neural network in this article is based on new accurate approach for training by unconstrained optimization, especially update quasi-Newton methods are perhaps the most popular general-purpose algorithms. A limited memory BFGS algorithm is presented for solving large-scale symmetric nonlinear equations, where a line search technique without derivative information is used. On each iteration, the updated approximations of Hessian matrix satisfy the quasi-Newton form, which traditionally served as the basis for quasi-Newton methods. On the basis of the quadratic model used in this article, we add a new update of quasi-Newton form. One innovative features of this form's is its ability to estimate the energy functio
... Show MoreBackground: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti
This paper introduces a Laplace-based modeling approach for the study of transient converter-grid interactions. The proposed approach is based on the development of two-port admittance models of converters and other components, combined with the use of numerical Laplace transforms. The application of a frequency domain method is aimed at the accurate and straightforward computation of transient system responses while preserving the wideband frequency characteristics of power components, such as those due to the use of high frequency semiconductive switches, electromagnetic interaction between inductive and capacitive components, as well as wave propagation and frequency dependence in transmission systems.