In this research work, a new type of concrete based on sulfur-melamine modification was introduced, and its various properties were studied. This new type of concrete was prepared based on the sulfur-melamine modification and various ingredients. The new sulfur-melamine modifier was fabricated, and its fabrication was confirmed by IR spectroscopy and TG analysis. The surface morphology resulted from this modifier was studied by SEM and EDS analysis. The components ratios in concrete, chemical and physical characteristics resulted from sulfur-melamine modifier, chemical and corrosion resistance of concrete, stability of concrete against water adsorption, stability of concrete against freezing, physical and mechanical properties and durability, modulus of elasticity, and thermal expansion coefficient of the studied sulfur concrete were investigated. The IR results confirmed the amino functional groups (attached melamine ring) and the formation of polymer sulfur chains. The sulfur-melamine modification thermic mass loss was one step. The mass loss processes of the modifier were endothermic processes. The obtained SEM results revealed that the sulfur-melamine modifier had a more porous structure, without any crystal forms. EDS analysis showed that the nitrogen atoms were accounted for 51.33% of total mass while the carbon was 30.94% of total mass. The stability of sulfur-melamine modifier-based concrete was very high in the various aggressive solutions. The low size of aggregates-based concrete had more density, i.e., 2417 kg\m3. The concrete density was decreased slowly with increase in the size of aggregate. The average deformation of studied concrete was (0.0030-0.0033), confirming that the deformation performance of concrete was better than the traditional concretes. The obtained results also confirmed that value of thermal expansion coefficient for sulfur-melamine modified concrete was 17.2×10-6\˚C.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreRecently, numerous the generalizations of Hurwitz-Lerch zeta functions are investigated and introduced. In this paper, by using the extended generalized Hurwitz-Lerch zeta function, a new Salagean’s differential operator is studied. Based on this new operator, a new geometric class and yielded coefficient bounds, growth and distortion result, radii of convexity, star-likeness, close-to-convexity, as well as extreme points are discussed.
As one type of heating furnaces, the electric heating furnace (EHF) typically suffers from time delay, non-linearity, time-varying parameters, system uncertainties, and harsh en-vironment of the furnace, which significantly deteriorate the temperature control process of the EHF system. In order to achieve accurate and robust temperature tracking performance, an integration of robust state feedback control (RSFC) and a novel sliding mode-based disturbance observer (SMDO) is proposed in this paper, where modeling errors and external disturbances are lumped as a lumped disturbance. To describe the characteristics of the EHF, by using convection laws, an integrated dynamic model is established and identified as an uncertain nonlinear second ord
... Show MoreAbstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreLiquid-side mass-transfer coefficients (KLa) were measured in air-suction type fermentors using physical absorption of oxygen. A fermentor of 0. 5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of shrouded-disk/curved-blade turbine with six evacuated bending blades. The effect of liquid submergence (S) was investigated. Further, the effects of the ratio of the impeller diameter (D) to the tank diameter (T), and the clearance of the impeller from the tank bottom(C) were also studied. The agitation speed (N) was varied in the range of 50-800 rpm. It was found that the value of K
... Show MoreIn this work, porous Silicon structures are formed with photochemical etching process of n-type Silicon(111) wafers of resistivity (0.02.cm) in hydrofluoric acid (HF) of concentration (39%wt) under light source of tungeston halogen lamp of (100 Watt) power. Samples were anodized in a solution of 39%HF and ethanol at 1:1 for 15 minutes. The samples were realized on n-type Si substrates Porous Silicon layers of 100m thickness and 30% of porousity. Frequency dependence of conductivity for Al/PSi/Si/Al sandwich form was studied. A frequency range of 102-106Hz was used allowing an accurate determination of the impedance components. Their electronic transport parameters were determined using complex impedance measurements. These measu
... Show More