In this research work, a new type of concrete based on sulfur-melamine modification was introduced, and its various properties were studied. This new type of concrete was prepared based on the sulfur-melamine modification and various ingredients. The new sulfur-melamine modifier was fabricated, and its fabrication was confirmed by IR spectroscopy and TG analysis. The surface morphology resulted from this modifier was studied by SEM and EDS analysis. The components ratios in concrete, chemical and physical characteristics resulted from sulfur-melamine modifier, chemical and corrosion resistance of concrete, stability of concrete against water adsorption, stability of concrete against freezing, physical and mechanical properties and durability, modulus of elasticity, and thermal expansion coefficient of the studied sulfur concrete were investigated. The IR results confirmed the amino functional groups (attached melamine ring) and the formation of polymer sulfur chains. The sulfur-melamine modification thermic mass loss was one step. The mass loss processes of the modifier were endothermic processes. The obtained SEM results revealed that the sulfur-melamine modifier had a more porous structure, without any crystal forms. EDS analysis showed that the nitrogen atoms were accounted for 51.33% of total mass while the carbon was 30.94% of total mass. The stability of sulfur-melamine modifier-based concrete was very high in the various aggressive solutions. The low size of aggregates-based concrete had more density, i.e., 2417 kg\m3. The concrete density was decreased slowly with increase in the size of aggregate. The average deformation of studied concrete was (0.0030-0.0033), confirming that the deformation performance of concrete was better than the traditional concretes. The obtained results also confirmed that value of thermal expansion coefficient for sulfur-melamine modified concrete was 17.2×10-6\˚C.
Cancer is one of the critical health concerns. Health authorities around the world have devoted great attention to cancer and cancer causing factors to achieve control against the increasing rate of cancer. Carcinogens are the most salient factors that are accused of causing a considerable rate of cancer cases. Scientists, in different fields of knowledge, keep warning people of the imminent attack of carcinogens which are surrounding people in the environment and may launch their attack at any moment. The present paper aims to investigate the linguistic construction of the imminent carcinogen attack in English and Arabic scientific discourse. Such an investigation contributes to enhancing the scientists’ awareness of the linguistic co
... Show MoreIn this paper, several combination algorithms between Partial Update LMS (PU LMS) methods and previously proposed algorithm (New Variable Length LMS (NVLLMS)) have been developed. Then, the new sets of proposed algorithms were applied to an Acoustic Echo Cancellation system (AEC) in order to decrease the filter coefficients, decrease the convergence time, and enhance its performance in terms of Mean Square Error (MSE) and Echo Return Loss Enhancement (ERLE). These proposed algorithms will use the Echo Return Loss Enhancement (ERLE) to control the operation of filter's coefficient length variation. In addition, the time-varying step size is used.The total number of coefficients required was reduced by about 18% , 10% , 6%
... Show MoreBackground: Many materials were proposed as root canal obturating materials but the biocompatibility issue remains to be a critical one. Propolis has been used as a therapeutic agent since the time of Hippocrates. It is known that propolis exhibits some pharmacological activities, such as antibacterial, antiviral, antifungal and anti inflammatory activity. Materials and methods: Eighteen albino rats were used in the study and divided randomly into three groups of 6 animals for each group. Each group was scheduled to be sacrificed at different time periods, which were three days, one week and three weeks. Propolis and ZOE sealer implants of 4mm in diameter and 0.5 gm in weight were implanted in the dorsal side of the rats. At the end of the
... Show MoreIn this paper, split-plate airlift electrochemical reactor as an apparatus with new configuration for wastewater treatment was provided. Two aluminum plates were fixed inside the reactor and present two functions; first it works as split plates for internal loop generation of the airlift system (the zone between the two plates acts as riser while the other two zones act as downcomer) and second it works as two electrodes for electrocoagulation process. Simulated wastewater contaminated with zinc ions was used to test the performance of this apparatus for zinc removal by studying the effect of different experimental variables such as initial concentration of zinc (50-800 ppm), electrical current density (2.67-21.4 mA/cm2), init
... Show MoreA new method for construction ion-selective electrode (ISE) by heating reaction of methyl orange with ammonium reineckate using PVC as plasticizer for determination methyl orange and determination Amitriptyline Hydrochloried drug by formation ion-pair on electrode surface . The characteristics of the electrode and it response as following : internal solution 10-4M , pH (2.5-5) ,temperature (20-30) and response time 2 sec. Calibration response for methyl orange over the concentrationrange 10-3 -10-9 M with R=0.9989 , RSD%=0.1052, D.O.L=0.315X10-9 MEre%=(-0.877- -2.76) , Rec%.=(97.230 -101.711) .
One of the main parts in hydraulic system is directional control valve, which is needed in order to operate hydraulic actuator. Practically, a conventional directional control valve has complex construction and moving parts, such as spool. Alternatively, a proposed Magneto-rheological (MR) directional control valve can offer a better solution without any moving parts by means of MR fluid. MR fluid consists of stable suspension of micro-sized magnetic particles dispersed in carrier medium like hydrocarbon oil. The main objectives of this present research are to design a MR directional control valve using MR fluid, to analyse its magnetic circuit using FEMM software, and to study and simulate the performance of this valve. In this research, a
... Show MoreA series of 4-(methylsulfonyl)aniline derivatives were synthesized in order to obtain new compounds as a potential anti-inflammatory agents with expected selectivity against COX-2 enzyme. In vivo acute anti-inflammatory activity of the final compounds 11–14 was evaluated in rat using an egg-white induced edema model of inflammation in a dose equivalent to 3 mg/Kg of diclofenac sodium. All tested compounds produced significant reduction of paw edema with respect to the effect of propylene glycol 50% v/v (control group). Moreover, the activity of compounds 11 and 14 was significantly higher than that of diclofenac sodium (at 3 mg/Kg) in the 120–300 minute time interval, while compound 12 expressed a comparable effect to that of di
... Show MoreAbstract In the current contribution, a novel binuclear nickel(II) and zinc(II) complexes were prepared from a hexadentate ligand prepared via condensation of 3,3'-Bipyridine-6,6'-dicarbaldehyde , 2-amino-5-chlorobenzaldehyde and 2-Aminophenol .The symmetric ligand (H2DTPE) and its metal complexes were illustrated utilizing various techniques of physicochemical containing magnetic moment, analytical analysis and spectroscopy of mass, IR, 13C and 1H NMR, TGA and UV-Vis. The particles of MO Nanoscale were created from the labeled complex applying the ways of pyrolysis and utilizing methods of XRD, FT-IR, and FE-SEM, that specified close compatibility with the typical pattern for nanoparticles of NiO, ZnO and appeared the reasonable size in
... Show More