Copper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticles. Copper nanoparticles were prepared using gelatin biopolymer, CuSO4.5H2O ions and hydrazine as stabilizer, precursor salt and reducing agent respectively. However, vitamin C and NaOH solution were also employed as an antioxidant and pH adjuster. The synthesized copper nanoparticles were characterized using UV-visible spectroscopy (UV-vis), thermogravimetric analysis (TGA), zeta potential measurements powder, X-ray diffraction (XRD), field emission scanning electron microscope and transmission electron microscope (TEM). The UV-visible absorption spectrum confirms the formation of the CuNPs, which showed maximum absorbance at 583 nm. Results obtained from TEM indicated a decrease in size of particle from a low concentration to high concentration of the supporting materials. The optimum concentration of gelatin was found to be 0.75 wt%. The supporting materials used for this synthesis are biocompatible and the obtained products are stable in air. The synthesized CuNPs display promising antibacterial activities against B. subtilis (B29), S. aureus (S276), S. choleraesuis (ATCC 10708) and E. coli (E266) as gram positive and negative bacteria respectively.
Systemic lupus Erythematosus is an autoimmune disease of unknown aetiology affecting multiple organ system. Reactive nitrogen and oxygen species are claimed to play a role in this disease. However, the potential of Nitrosative/Oxidative Stress to elicit an autoimmune, response remain till now largely unexplored in humans. This study was done to investigate the status and contribution of nitrosative/oxidative stress in Iraqi patients for systemic lupus erythematosus. Blood samples from 19 patients with systemic lupus erythematosus and 19 age-and sex- matched apparently healthy controls were evaluated for serum levels of nitrosative/oxidative stress markers including nitric oxide, peroxynitrite and malondialdehyde. Nitric oxide levels were
... Show MoreThe specific activities of the natural radionuclides U-238 and Th-
232 and K-40 in 14 soil samples collected from different sites from
AL-Mustansiriyah university at two depths (topsoil "surface" and
20cm depth) were be investigated using gamma ray spectrometer
3"x3" NaI(Tl) scintillation detector.
The analysis of the energy spectra of the soil samples show that
these samples have specific activities ranging with (16.08-51.11)
Bq/kg for U-238, (14.79-52.29) Bq/kg for Th-232 and (191.08-
377.64) Bq/kg for K-40, with an average values of 29.37, 34.14 and
289.62 Bq/kg for U-238, Th-232, k-40 respectively. The radiation
hazard parameters of the natural radionuclides; radium equivalent
activity (Raeq), gamma a
This paper presents the effect of Cr doping on the optical and structural properties of TiO2 films synthesized by sol-gel and deposited by the dip- coating technique. The characteristics of pure and Cr-doped TiO2 were studied by absorption and X-ray diffraction measurement. The spectrum of UV absorption of TiO2 chromium concentrations indicates a red shift; therefore, the energy gap decreases with increased doping. The minimum value of energy gap (2.5 eV) is found at concentration of 4 %. XRD measurements show that the anatase phase is shown for all thin films. Surface morphology measurement by atomic force microscope (AFM) showed that the roughness of thin films decrease with doping and has a minimum value with 4 wt % doping ratio.
A numerical simulation is made on the thermal lensing effect in an laser diode end-pumped Nd:YAG laser rod. Based on finite element method (FEM), the laser rod temperature distribution is calculated and the focal length is deduced for a Gaussian and super-Gaussian pump beam profiles.
At the pump power of 20W, the highest temperature located at the center of end-pumped face was 345K, and the thermal lens focal length was 81.4mm along the x-z axis.
The results indicate that the thermal lensing effect sensitively depend on the pump power, waist radius of the pump beam and the pump distribution in a laser rod geometry.
In this work, the impact of different geomagnetic storm events on the plasma-sphere layer (ionosphere layer) over the northern and southern hemisphere regions was investigated during solar cycle 23. To grasp the influence of geomagnetic storms on the behavior and variation of the critical frequency parameter of the F2 ionospheric layer (foF2), five geomagnetic storms (classified as great, severe, and strong), with Disturbance storm time (Dst) values <-100 nT were chosen. Four stations located in different mid-latitude regions in northern and southern hemispheres were designated, the northern stations are: Millstone Hill (42.6° N, 288.50° W) and Rome (41.90° N, 12.50° E) and the southern stations are: Port Stanley (-51.60° S,
... Show MoreOne of the common geotechnical problems is the construction on soft soil and the improvement of its geotechnical properties to meet the design requirements. A stone column is one of the well-known techniques used to improve the geotechnical properties of soft soils. Sometimes thick layers of soft soil imposed the designer to use floating stone columns for improvement of such soil; in this case, the designer will be lost the end bearing of the stone column. In this study, the effects of several patterns of floating stone columns distribution under footing on the bearing capacity of soil and the distribution of excess porewater pressure are investigated. The soft soil used in this study has a very low undrained shear strength (cu) of
... Show MoreBACKGROUND: Enteric fever caused by Salmonella Typhi is an endemic disease in Iraq. Variations in presentations make it a diagnostic challenge. If untreated or treated inappropriately then it is a serious disease with potentially life-threatening complications. The recent emergence of drug resistant strains of S. Typhi is a rising public health problem and a clinical concern to the physician. AIM: The objectives of the study were to assess and describe the patterns of antimicrobial resistance, clinical characteristics, epidemiological distribution, and complications of typhoid fever. PATIENTS AND METHODS: Fifty cases of typhoid fever (culture proven) were collected during the period from February 2019 to November 2019 in the me
... Show More