Currently, one of the topical areas of application of machine learning methods is the prediction of material characteristics. The aim of this work is to develop machine learning models for determining the rheological properties of polymers from experimental stress relaxation curves. The paper presents an overview of the main directions of metaheuristic approaches (local search, evolutionary algorithms) to solving combinatorial optimization problems. Metaheuristic algorithms for solving some important combinatorial optimization problems are described, with special emphasis on the construction of decision trees. A comparative analysis of algorithms for solving the regression problem in CatBoost Regressor has been carried out. The object of the study is the generated data sets obtained on the basis of theoretical stress relaxation curves. Tables of initial data for training models for all samples are presented, a statistical analysis of the characteristics of the initial data sets is carried out. The total number of numerical experiments for all samples was 346020 variations. When developing the models, CatBoost artificial intelligence methods were used, regularization methods (Weight Decay, Decoupled Weight Decay Regularization, Augmentation) were used to improve the accuracy of the model, and the Z-Score method was used to normalize the data. As a result of the study, intelligent models were developed to determine the rheological parameters of polymers included in the generalized non-linear Maxwell-Gurevich equation (initial relaxation viscosity, velocity modulus) using generated data sets for the EDT-10 epoxy binder as an example. Based on the results of testing the models, the quality of the models was assessed, graphs of forecasts for trainees and test samples, graphs of forecast errors were plotted. Intelligent models are based on the CatBoost algorithm and implemented in the Jupyter Notebook environment in Python. The constructed models have passed the quality assessment according to the following metrics: MAE, MSE, RMSE, MAPE. The maximum value of model error predictions was 0.86 for the MAPE metric, and the minimum value of model error predictions was 0.001 for the MSE metric. Model performance estimates obtained during testing are valid.
Thin films of Magnetite have been deposited on Galvanized Steel (G-S) alloy using RF-reactive magnetron sputtering technique and protection efficiency of the corrosion of G-S. A Three-Electrodes Cell was used in saline water (3.5 % NaCl) solution at different temperatures (298, 308, 318 & 328K) using potentiostatic techniques with. Electrochemical Impedance Spectroscopy (EIS) and fitting impedance data via Frequency Response Analysis (FRA) were applied to G-S alloy with Fe3O4 and tested in 3.5 % NaCl solution at 298K.Results taken from Nyquist and Bode plots were analyzed using software provided with the instrument. The results obtained show that the rate of corrosion of G.S alloy increased with increasing the temperatures from 298 t
... Show MoreThe research aims to clarify the COBIT5 framework for IT governance and to develop of a criterion based on Balanced Scorecard that contributes in measuring the performance of IT governance. To achieve these goals, the researchers adopted the deductive approach in the design of balanced scorecard to measure the IT governance at the Bank of Baghdad that was chosen because it relied heavily on IT.
The research has reached a number of conclusions, the most important of which is that the performance of IT department in the Bank of Baghdad falls within the good level that requires constant monitoring, the most committed items of Balanced Scorecard by the Bank were customer, internal operation, growth and finally the financial item; IT
... Show MoreCancer stem cells (CSCs) are defined as a population of cells present in tumours, which can undergo self-renewal and differentiation. Identification and isolation of these CSCs using putative surface markers have been a priority of research in cancer. With this background we selected pancreatic normal and tumor cells for this study and passaged them into animal tissue culture medium. Further staining was done using alkaline phosphatase and heamatoxilin staining. Blue to purple colored zones in undifferentiated pluripotent stem cells and clear coloration in the chromatin material indicated pancreatic cells. Further studies on the cell surface marker CD 44 were done using ELISA. For this, the protein was extracted from cultivated normal and t
... Show MoreIn this paper, third order non-polynomial spline function is used to solve 2nd kind Volterra integral equations. Numerical examples are presented to illustrate the applications of this method, and to compare the computed results with other known methods.
In the present work, we use the Adomian Decomposition method to find the approximate solution for some cases of the Newell whitehead segel nonlinear differential equation which was solved previously with exact solution by the Homotopy perturbation and the Iteration methods, then we compared the results.
The growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show More